
ISO/IEC JTC 1/SC 34/WG 4 N 0266

1

Parts 1 & 4 Edits Relating to the Part 3 Revision

Francis Cave (francis@franciscave.com)

Rex Jaeschke (rex@RexJaeschke.com)

2013-08-16

During the revision of Part 3 (MCE), it was noticed that various clauses and subclauses of Parts 1 and 4 made

reference to features defined in Part 3. The intent of this paper is to identify such references and to point out

those which will, or might, need editing based on the changes being proposed for Part 3.

We started by searching Part 1 for occurrences of ‘AlternateContent’, ‘Ignorable’, ‘PreserveElements’ and

‘PreserveAttributes’. We also searched for occurrences of ‘extLst’, in case that threw up any additional

references to MCE. (Most of the occurrences of ‘ignorable’ are not relevant.)

The proposed changes to IS 29500-1:2012 and IS 29500-4:2012, and commentary, follow below in ascending

order by Part and subclause number. Direct quotes from those Parts are shaded in grey, like this.

Part 1, §2.1, “Document Conformance”, p. 2

A document of conformance class Office Open XML Strict shall be a package of conformance class OPC, as

specified in ISO/IEC 29500-2, for which all the following shall hold:

 …

 For each OPC Part of the document of the types listed in §11.3, §12.3, §13.3, §14.2 or §15.2, all the

following shall hold:

i. The part is of conformance class MCE, as specified in ISO/IEC 29500-3The Part may contain markup

in the Markup Compatibility namespace as specified in ISO/IEC 29500-3

ii. After the removal of any extensions using the mechanismsby an MCE processor as specified in

ISO/IEC 29500-3, the part is valid against the strict W3C XML Schema (Appendix A)

Part 1, §10, “Markup Compatibility and Extensibility”, p. 28

Office Open XML documents are designed to allow for innovation by extending their capabilities, by using

(where allowed) the Application-Defined Extension Elements extLst and ext specified by this Part of ISO/IEC

29500 or by using the Markup Compatibility and Extensibility features specified by ISO/IEC 29500-3:20xx via a

scheme defined by Part 3. This subclause contains information regarding Office Open XML's use of the Markup

Compatibility constructs and Extensibility features, in particular in combination with extension elements.

All the features of ISO/IEC 29500-3:20xx are supported by this Part of ISO/IEC 29500. An MCE processor shall be

configured so as not to process the content of any extension element specified by this Part of ISO/IEC 29500,

mailto:francis@franciscave.com
mailto:rex@RexJaeschke.com

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 2

i.e., specifically not to process any instance of an element or attribute in the MCE namespace for which an

extension element is an ancestor element.

The substance of the existing Clause is in §10.1.1 and §10.1.2. We are proposing to remove ‘PreserveElements’

and ‘PreserveAttributes’from Part 3, in which case §10.1.1 can be removed. It seems likely that the revisions to

Part 3 will remove anything normative about extension elements, in which case §10.1.2 can also be removed.

The way in which ‘extLst’ interacts with MCE needs to be fully defined in Part 1. This in effect means that §10.1

is redundant, because there are no remaining constraints on Office Open XML's use of the revised (20xx) edition

of MCE. It is therefore proposed to modify the introductory paragraph as proposed above and add the second

paragraph to specify how MCE processors should be configured to handle extension elements.

Part 1, §10.1, “Constraints on Office Open XML's Use of Markup Compatibility and Extensibility”, p. 28

While the Markup Compatibility and Extensibility specification is designed for and used by Office Open XML

documents, it could also be used to support a much broader range of applications. As a result, the use of some

Markup Compatibility and Extensibility features is restricted within Office Open XML documents. These

additional requirements are discussed in the following subordinate subclauses. Unless explicitly specified below,

all normative requirements of the Markup Compatibility and Extensibility specification apply to Office Open XML

documents.

Part 1, §10.1.1, “PreserveElements and PreserveAttributes”, p. 28

The PreserveElements and PreserveAttributes elements, as defined in Part 3, allow a markup language to

specify the conditions under which extensions should be round-tripped, even when their contents are edited.

Within the context of the markup languages explicitly defined by ISO/IEC 29500, no such conditions are

specified, and therefore applications are not obliged to support these hints at any point in an Office Open XML

document. Instead, the well-defined extensibility constructs defined below should be used.

All other constructs defined in Part 3 shall be supported.

Part 1, §10.1.2, “Office Open XML Native Extensibility Constructs”, p. 28

Clause 12 of Part 3 specifies the ability for a markup language to define additional constructs for extensibility of

a specific markup language. Within the context of Office Open XML documents, the extLst element(s) defined in

individual markup languages shall allow the round-tripping of all unknown content regardless of the state of the

PreserveElements and PreserveAttributes elements. See the reference material in §17–23 for additional

information on the XML elements that allow the use of the extLst construct.

Part 1, §17.17.3, “Roundtripping Alternate Content”, p. 1297–1298

Office Open XML defines a mechanism for the storage of content which is not defined by ISO/IEC 29500, for

example extensions developed by future software applications which leverage the Office Open XML formats.

This mechanism allows for the storage of a series of alternative representations of content, of which the

consuming application should use the first alternative whose requirements are met.

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 3

[Example: Consider an application which creates a new paragraph property intended to make the colors of its

text change colors randomly when it is displayed. This functionality is not defined in ISO/IEC 29500, and so the

application might choose to create an alternative representation setting a different manual color on each

character for clients which do not understand this extension using an AlternateContent block as follows:

<ve:AlternateContent xmlns:ve="…">

 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">

 <w:p>

 <w:pPr>

 <colors:random colors:val="true" />

 </w:pPr>

 <w:r>

 <w:t>Random colors!</w:t>

 </w:r>

 </w:p>

 </ve:Choice>

 <ve:Fallback>

 <w:p>

 <w:r>

 <w:rPr>

 <w:color w:val="FF0000" />

 </w:rPr>

 <w:t>R</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:color w:val="00FF00" />

 </w:rPr>

 <w:t>a</w:t>

 </w:r>

 …

 </w:p>

 </ve:Fallback>

</ve:AlternateContent>

The Choice element that requires the new color extensions uses the random element in its namespace, and the

Fallback element allows clients that do not support this namespace to see an appropriate alternative

representation. end example]

These alternate content blocks can occur at any location within a WordprocessingML document, and

applications shall handle and process them appropriately (taking the appropriate choice).

However, WordprocessingML does not explicitly define a set of locations where applications shall should,

whenever possible, attempt to store and roundtrip all non-taken choices in alternate content blockswhenever

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 4

possible. This behavior is therefore application-defined. For further discussion of alternate content blocks see

§L.1.18.4.

[Example: If an application does not understand the colors extension, the resulting file (if alternate choices are

to be preserved would appear as follows:

<ve:AlternateContent xmlns:ve="…">

 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">

 …

 </ve:Choice>

 <ve:Fallback>

 …

 </ve:Fallback>

</ve:AlternateContent>

The file would then appear as follows after the choice is processed:

<w:p>

 <w:r>

 <w:rPr>

 <w:color w:val="FF0000" />

 </w:rPr>

 <w:t>R</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:color w:val="00FF00" />

 </w:rPr>

 <w:t>a</w:t>

 </w:r>

 …

</w:p>

The state of the alternate choices (preserved or not) is dependent on the application hosting the file. Preserving

the content involves storing each non-taken choice while the file is being edited, and writing out the file with an

AlternateContent block when it is resaved. end example]

The normative definition for AlternateContent is in Part 3, so there is no need to re-specify any part of that

here. As such, almost all of this subclause content is tutorial in nature. As it happens, all but one sentence of this

subclause exists, verbatim, in the informative subclause Part 1, §L.1.18.4, “Roundtripping Alternate Content”. As

such, that text can be removed from §17.17.3.

The only text from §17.17.3 that is not in §L.1.18.4 is the underlined sentence in the following: “However,

WordprocessingML does not explicitly define a set of locations where applications shall attempt to store and

roundtrip all non-taken choices whenever possible. This behavior is therefore application-defined.” Right now,

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 5

that text is normative, and by declaring this behavior to be application-defined, each conforming

implementation is required to document that behavior. If this statement were removed or moved to informative

text (which would require the removal of the behavior mention), the behavior would become unspecified, which

does not require anything of a conforming implementation. So, if the intent is to require such an

implementation to document such behavior, this statement needs to stay normative. However, this whole

clause could be reduced to contain a single paragraph containing (essentially) this normative text, rather than

repeat material that can more properly be found in §L.1.18.4.

Part 1, §18.2.7, “ext (Extension)”, p. 1555

Each extension within an extension list shall be contained within an ext element. Extensions shall be versioned

by namespace, using the uri attribute, and shall be allowed to appear in any order within the extension list. Any

number of extensions shall be allowed within an extension list.

When extension lists are processed, a consumer might understand some extensions, and might not understand

other extensions. The preservation model for extensions is that unprocessed extensions shall always be

preserved (when consuming) and written out (when producing) in whole, as long as the underlying schema

extended by the extension list remainsas long as there is not some ancestor element of the extension list that is

discarded as a result of either MCE processing (when consuming). [Example: If a spreadsheetML sheet contains

several extensions within an extension list, and through runtime processing that sheet is removed from the

workbook, then the extensions associated with that sheet must not be written out when producing the resulting

markup document. end example]

Markup namespaces within extensions shall not be required to be listed in the Ignorable Compatibility-Rule

attribute, nor shall these namespaces be required to be listed in the PreserveElements and PreserveAttributes

Compatibility-Rule attributes. [Note: See Part 3§10 for additional discussion on Application-Defined Extension

Elements and processing rules. end note]

…

Upon encountering extensions, a processing consumer shall determine whether it knows how to process

extensions using the value of the uri. If the consumer knows how to process such an extension, the markup

contained within that extension is processed. Otherwise, the extension content shall be preserved so long as the

underlying structure being extended bythat contains the extLst has not been removed.

…

References to MCE features that have been removed from Part 3 should be removed here. The phrases

"underlying schema" and "underlying structure" are unclear. The highlighted example is poor, because the

normative text concerns processing when consuming (i.e. reading/opening) or producing (i.e. writing/saving) a

document, and not what might or might not happen between the two. This standard cannot usefully comment

upon what happens between consumption and production, as this is implementation-dependent. An

implementation might (reasonably or unreasonably) give the user the option of removing extension elements

before saving the document. The example therefore needs to be improved.

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 6

Part 1, §18.2.10, “extLst (Future Feature Data Storage Area)”, p. 1557–1558

…

[Note: Allowing markup specification extensions and private markup extensions within an extension list does not

violate interoperability because the rules articulated within §10, §18.2.7 and Part 3, §12 describe how markup

producers and consumers must generate and consume markup documents containing application defined

extension elements, including how to avoid and when to generate error conditions. end note]

…

Is the reference to Part 3, §12, “Application-Defined Extension Elements”, still valid? If so, we need to change

this to the new number for that clause. [Several, early clauses were deleted from Part 3 during the revision.].

The term "error conditions" is probably misleading. Would "conditions likely to be interpreted as errors" be

better?

Part 1, §L.7.3, “Future Extensibility”, p. 5001

This clause provides a high-level overview of the extensibility model for Office Open XML documents, and a

description of packaging conventions in the context of DrawingML and PresentationML. Two main constructs

are described: extensibility lists (extLst/ext) and alternate content blocks (AlternateContent).

To illustrate certain points, a number of examples refer to versions of a (fictitious) PresentationML

consumer/producer called PML. The 2003 version is called PML 2003; the 2007 version is called PML 2007; and

so on.

…

There is inconsistent use of terminology: "Application-Defined Extension Elements", "extension elements",

"extensions", "extensibility lists",... We need to decide which is the right term in each context and provide

definitions that relate the various terms used. Preferably, we should reduce the number of terms used.

Part 1, §L.7.3.4.2, “AlternateContent Blocks”, p. 5005

…

This doesn’t seem to offer anything over and above what Part 3 has. In any event. ISO editing rules do not

permit a parent [sub]clause to contain text if it has subclauses. As such, we should consider removing this text.

Part 1, §L.7.3.4.2.1, “AlternateContent Syntax”, p. 5006

…

It seems that if this is specified in Part 3, it need not be repeated here.

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 7

Part 1, §L.7.3.4.2.2, “Example”, pp. 5006–5009

…

Part 1, §L.7.3.4.2.3, “AlternateContent Round-Trip Behavior”, p. 5009

AlternateContent maintains multiple representations for the same content. Consider an extreme case. Using

the example above, let's suppose one edited the label using PML 2007. As PML 2007 wouldn't understand future

representations, there is no possibility that it could keep PML 2009's markup consistent with the edit

performed. Considering a simple case, let's suppose one deleted the label in its entirety. PML 2007 would only

know how to delete the corresponding textbox, and would not know how to update the corresponding

cntrLblPr.

If this textbox contained sensitive information, one might consider this a security leak. The user's belief is that

the information in the textbox was deleted, yet it persists in an alternate representation.

To solve this problem, all AlternateContent choices are discarded when an edit is performed at the location the

AlternateContent is placed. It is the consuming client's responsibility to replace the discarded AlternateContent

with a new representation.

If an edit to the label occurred in PML 2007, the PML 2009 version is discarded.

If an edit occurs in PML 2009, since PML 2009 understands both PML 2007 and PML 2009 schemas, it is possible

for PML 2009 to write an updated AlternateContent Block encompassing an update to both choices.

This seems to be yet further duplication of the material on round-tripping alternate content.

Part 4, §2.1, “Document Conformance”, p. 2

A document of conformance class Office Open XML Transitional shall be a package of conformance class OPC, as

specified in ISO/IEC 29500-2, for which all the following shall hold:

 The document obeys all constraints specified in this Part of ISO/IEC 29500

 The document is of category Wordprocessing, Spreadsheet, or Presentation. These categories are

defined in ISO/IEC 29500-1:2011 §4

 VML Drawing Parts (§8.1) contain markup in the Markup Compatibility namespace as specified in

ISO/IEC 29500-3 are of conformance class MCE, as specified in ISO/IEC 29500-3. Any child elements of

the root element of VMLDrawing Parts are valid against the VML schema shown in A.6, “VML”, after the

removal of any extensions specified using the mechanisms in ISO/IEC 29500-3. VML Drawing Parts obey

all constraints specified in this Part of ISO/IEC 29500

 For each OPC Part of the document of the types listed in §9.1 or ISO/IEC 29500-1:2011 §11.3, §12.3,

§13.3, §14.2, and §15.2, all the following shall hold:

i. The part is of conformance class MCE, as specified in ISO/IEC 29500-3The Part may contain markup in

the Markup Compatibility namespace as specified in ISO/IEC 29500-3

SC 34/WG4 N 0266 — Part 1 & 4 Edits Relating to the Part 3 Revision

 8

ii. After the removal of any extensions using the mechanismsby an MCE processor as specified in ISO/IEC

29500-3, the part is valid against the Transitional W3C XML Schema (Annex A)

The revision of Part 3 proposes deleting the Conformance clause (and hence conformance class MCE). The

tracked changes proposed above correspond to those proposed in DR 13-0009 for Part 1.

