
ISO/IEC 29500-3:201x

 Office Open XML File Formats — Markup

Compatibility and Extensibility

[Working DRAFT WD 0.94]

2013-10-15

Proof whole spec checking that the term “document” is used consistently and correctly.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved iii

Contents

Foreword ... iv

Introduction .. vi

1. Scope .. 1

2. Normative References ... 2

3. Terms and Definitions .. 3

4. Notational Conventions ... 4

5. General Description ... 5

6. Overview ... 6

7. MCE Elements and Attributes ... 8

7.1 Introduction .. 8
7.2 Ignorable Attribute .. 8
7.3 ProcessContent Attribute.. 9
7.4 MustUnderstand Attribute ... 11
7.5 AlternateContent Element .. 12
7.6 Choice Element ... 13
7.7 Fallback Element ... 14

8. Application-Defined Extension Elements ...16

9. Semantic Definitions and Reference Processing Model ..18

9.1 Overview ... 18
9.2 Step 1: Ignoring and Unwrapping ... 19
9.3 Step 2: Selecting Alternates .. 20
9.4 Step 3: Creating output documents and examining MustUnderstand attributes 21

Annex A. (informative) Examples ..27

A.1 Example: Ignorable Attribute .. 27
A.2 Example: Ignorable and ProcessContent Attributes ... 28
A.3 Example: Non-Ignorable and Non-Understood Namespace ... 30
A.4 Example: MustUnderstand Attribute .. 30
A.5 Example: AlternateContent Element .. 31
A.6 Example: Ignorable Content Inside Application-Defined Extension Elements ... 33

Annex B. (informative) Validation Using NVDL ...35

Bibliography ...37

ISO/IEC 29500-3:201x(E)

iv ©ISO/IEC 201x – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of

ISO or IEC participate in the development of International Standards through technical committees established

by the respective organization to deal with particular fields of technical activity. ISO and IEC technical

committees collaborate in fields of mutual interest. Other international organizations, governmental and non-

governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO

and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29500-3 was prepared by ISO/IEC JTC 1, Information technology, Subcommittee SC 34, Document

description and processing languages.

This fourth edition cancels and replaces the third edition (ISO/IEC 29500-3:2012).

The major changes from the previous edition include:

1. Specification of the core semantics in one place, and the interactions among semantic constructs

and/or the processing model.

2. Removal of the specification of namespace subsumption

3. Expansion of examples, in particular, by providing output documents

The intended semantics remains the same as long as namespace subsumption is not used.

Rationale, which will be removed from the final draft:

Why revision? The biggest reason is that interactions between MCE constructs were not clear enough. In

particular, although application-defined extension elements suppress normal processing of every MCE

construct, application-defined extension elements were not even mentioned in Clause 10, which defines the

semantics of the MCE constructs. Other reasons include:

Namespace subsumption was underspecified.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved v

Existing users of MCE are not affected as long as they do not use namespace subsumption. Since OOXML Parts

1 and 4 do not use namespace subsumption, they should not be affected if they prohibit the use of the new

attribute. (Note: CORs for 1 and 4 are expected for introducing this prohibition.)

Major changes in the third edition included:

Removed all traces of the concept of markup editor

Removed the attributes PreserveAttributes and PreserveElements

There were no major changes in the second edition.

ISO/IEC 29500 consists of the following parts, under the general title Information technology — Document

description and processing languages — Office Open XML File Formats:

Part 1: Fundamentals and Markup Language Reference

Part 2: Open Packaging Conventions

Part 3: Markup Compatibility and Extensibility

Part 4: Transitional Migration Features

Annex A is for information only.

ISO/IEC 29500-3:201x(E)

vi ©ISO/IEC 201x – All rights reserved

Introduction

ISO/IEC 29500 specifies a family of XML schemas, collectively called Office Open XML, that define the XML

vocabularies for word-processing, spreadsheet, and presentation documents, as well as the packaging of

documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and

platforms, fostering interoperability across office productivity applications and line-of-business systems, as

well as to support and strengthen document archival and preservation, all in a way that is fully compatible with

the existing corpus of Microsoft® Office documents.

Readers new to this Part are advised to begin with Annex A.

INTERNATIONAL STANDARD ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 1

Information technology — Document description and

processing languages — Office Open XML File Formats

Part 3:

Markup Compatibility and Extensibility

1. Scope

This Part of ISO/IEC 29500 defines a set of conventions for forward compatibility of markup specifications.

These conventions allow XML documents created by applications of later versions or extensions to be handled

by applications of earlier versions.

ISO/IEC 29500-3:201x(E)

2 ©ISO/IEC 201x – All rights reserved

2. Normative References

The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced

document (including any amendments) applies.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., P. Overell, 2005,

http://www.ietf.org/rfc/rfc4234.txt

XML, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and François Yergeau (editors). Extensible

Markup Language (XML) 1.0, Fourth Edition. World Wide Web Consortium. 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/ [Implementers should be aware that a further correction of

the normative reference to XML to refer to the 5th Edition will be necessary when the related Reference

Specifications to which this International Standard also makes normative reference and which also depend

upon XML, such as XSLT, XML Namespaces and XML Base, are all aligned with the 5th Edition.[JH1]]

XML Base, Marsh, Jonathan. XML Base. World Wide Web Consortium. 2001. http://www.w3.org/TR/2009/REC-

xmlbase-20090128/

XML Information Set, John Cowan and Richard Tobin (editors). XML Information Set (Second Edition),

4 February 2004. World Wide Web Consortium. http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

XML Namespaces, Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Namespaces in XML

1.0 (Third Edition), 8 December 2009. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-xml-

names-20091208/

http://www.ietf.org/rfc/rfc4234.txt
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 3

3. Terms and Definitions

For the purposes of this document, the following terms and definitions apply:

3.1

application configuration

set of names of understood namespaces

3.2

application-defined extension element

element defined by a markup specification, the attributes and content of which are not to be processed by an

MCE processor

3.3

markup configuration

set of expanded names of application-defined extension elements

3.4

markup specification

XML-based format specification that allows the use of elements and attributes in the MCE namespace

3.5

MCE processor

software used to process XML documents containing MCE elements and attributes

3.6

mismatch

incompatibility between the constraints specified by MCE elements and attributes, and the namespaces

specified by an application configuration

3.7

understood namespace

namespace, the elements and attributes of which a consuming application is able to process

ISO/IEC 29500-3:201x(E)

4 ©ISO/IEC 201x – All rights reserved

4. Notational Conventions

The following typographical conventions are used in ISO/IEC 29500:

1. The first occurrence of a new term is written in italics. [Example: The text in ISO/IEC 29500 is divided

into normative and informative categories. end example]

2. The tag name of an XML element is written using a distinct style and typeface. [Example: The

bookmarkStart and bookmarkEnd elements specify … end example]

3. The name of an XML attribute is written using a distinct style and typeface. [Example: The dropCap

attribute specifies … end example]

4. The value of an XML attribute is written using a constant-width style. [Example: The attribute value of

auto specifies … end example]

5. The qualified or unqualified name of a simple type, complex type, or base datatype is written using a

distinct style and typeface.[Example: The possible values for this attribute are defined by the

ST_HexColor simple type. end example]

Except for whole clauses or annexes that are identified as being informative, informative text that is contained

within normative text is indicated in the following ways:

1. [Example: code fragment, possibly with some narrative … end example]

2. [Note: narrative … end note]

3. [Rationale: narrative … end rationale]

4. [Guidance: narrative … end guidance]

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 5

5. General Description

This clause is informative

This Part of ISO/IEC 29500 is divided into the following subdivisions:

1. Front matter (clauses 1–5);

2. Overview and introductory material (clause 6–Error! Reference source not found.);

3. Main body (clauses Error! Reference source not found.–9);

4. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers.

The following form the normative pieces of this Part of ISO/IEC 29500:

Clauses 1–4, and Error! Reference source not found.–9

The following make up the informative pieces of this Part of ISO/IEC 29500:

Introduction

Clauses 5 and 6

All annexes

All notes and examples

End of informative text

ISO/IEC 29500-3:201x(E)

6 ©ISO/IEC 201x – All rights reserved

6. Overview

This clause is informative

This Part of ISO/IEC 29500 describes a set of XML elements and attributes, called MCE elements and attributes,

the purpose of which is to enable producing applications to guide consuming applications in their handling of

any XML elements and attributes in namespaces not understood by the consuming applications.

MCE elements and attributes are intended to enable producing applications to use features added in new

versions or extensions of a markup specification in the production of new documents, which nevertheless

remain interoperable with consuming applications that do not understand these features. A producing

application includes MCE elements and attributes in documents to indicate to a consuming application how it

can adjust the content of the document to exclude those features that are not compatible with the version of

the markup specification that it understands, while at the same time allowing consuming applications that do

understand these features to make full use of them.

MCE elements and attributes define particular types of compatibility and extension constructs, as summarized

below:

Namespaces can be declared to be ignorable, indicating that all elements and attributes in those namespaces

can be disregarded by consuming applications as if they were not present in the input document, enabling

graceful degradation of the document functionality. This allows markup producers to identify some markup as

not core to the document content.

Elements in ignorable namespaces can be marked for their content to be processed that would otherwise be

ignored. This allows producing applications to prevent loss of content nested within an element in an ignorable

namespace when processed by consuming applications that do not understand that namespace but do

understand the namespace(s) of the nested content.

Namespaces can be declared that must be understood by consuming applications in order to process the

document. This allows producing applications to set minimum compatibility requirements for consuming

applications.

Alternative representations of document content can be specified. This allows producing applications to

include content alternatives for consuming applications with differing sets of understood namespaces and

corresponding capabilities.

Application-defined extension elements enable producing applications to introduce additional features scoped

to particular elements defined by a markup specification. Consuming applications might preserve application-

defined extension elements even if they do not process them in any other way.

Conceptually, a consuming application does not directly process input documents containing MCE elements

and attributes but rather uses an MCE processor to produce an output document understood by the

consuming application.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 7

End of informative text

ISO/IEC 29500-3:201x(E)

8 ©ISO/IEC 201x – All rights reserved

7. MCE Elements and Attributes

7.1 Introduction

This subclause specifies the syntactic definitions of all the MCE elements and attributes. They shall be in the

Markup Compatibility namespace.

The Markup Compatibility namespace shall be:

http://schemas.openxmlformats.org/markup-compatibility/2006

[Guidance: External DTD subsets should not specify default values for attributes in the Markup Compatibility

namespace, as some non-validating XML processors do not use such default values. end guidance]

Attributes within the Markup Compatibility namespace may occur on any XML element, including Markup

Compatibility elements.

Elements within the Markup Compatibility namespace shall not contain attributes within the XML namespace

http://www.w3.org/XML/1998/namespace.

7.2 Ignorable Attribute

An Ignorable attribute shall be an attribute in the Markup Compatibility namespace with local name

“Ignorable”. Its value shall be a whitespace-delimited list of zero or more namespace prefixes, optionally

having leading and/or trailing whitespace. For each namespace prefix in the list, there shall be an in-scope

namespace to which that prefix is bound, and it shall not be the Markup Compatibility namespace. This in-

scope namespace is said to be declared as ignorable by this Ignorable attribute.

[Example:

<example xmlns[JH2]:mce="http://schemas.openxmlformats.org/markup-

compatibility/2006">

 <foo mce:Ignorable="i1[JH3]"

 xmlns:i1="http://www.example.com/i1"

 xmlns:i2="http://www.example.com/i2">

 <bar mce:Ignorable="i2">…</bar>

 </foo>

</example>

The foo element and the bar element, which is a child of foo,[JH4] each have an Ignorable attribute. The

Ignorable attribute of foo specifies the prefix “i1”, which is bound to the in-scope namespace

“http://www.example.com/i1”. Thus, the Ignorable attribute of foo declares this namespace as

ignorable[JH5]. The Ignorable attribute of bar specifies the prefix “i2”, which is bound to the in-scope

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 9

namespace “http://www.example.com/i2”. Thus, the Ignorable attribute of bar declares this namespace as

ignorable[JH6]. end example]

[Example:

<example xmlns:mce="http://schemas.openxmlformats.org/markup-

compatibility/2006">

 <foo mce:Ignorable="i1"

 xmlns:i1="http://www.example.com/i1"

 xmlns:i2="http://www.example.com/i2">

 <bar mce:Ignorable="i2">…</bar>

 <bar mce:Ignorable="i1 i2">…</bar>

 <bar mce:Ignorable="i1alias i2"

 xmlns:i1alias="http://www.example.com/i1">…</bar>

 </foo>

</example>

The Ignorable attribute of the first bar element declares the namespace “http://www.example.com/i2” as

ignorable. The Ignorable attribute of the second bar element declares both “http://www.example.com/i1”

and “http://www.example.com/i2” as ignorable, but the former is already declared by the Ignorable attribute

of the parent foo element. The Ignorable attribute of the third bar element also declares these two

namespaces as ignorable, although the namespace prefix is i1alias rather than i1. Therefore, although the

lexical values are different, these three Ignorable attributes are equivalent [JH7]as far as MCE processing is

concerned. end example]

[Example:

<example xmlns:mce="http://schemas.openxmlformats.org/markup-

compatibility/2006">

 <foo1 mce:Ignorable="i1">

 <foo2 xmlns:i1="http://www.example.com/i1">…</foo2>

 </foo1>

 <foo3 mce:Ignorable="i2">…</foo3>

 <foo4 xmlns:i2="http://www.example.com/i4[JH8]"/>

</example>

This document is non-conformant for two reasons: First, the foo1 element has an Ignorable attribute, but the

value i1 is not bound to an in-scope namespace. Second, the foo3 element also has an Ignorable attribute,

but the value i2 is not bound to an in-scope namespace either. end example]

7.3 ProcessContent Attribute

A ProcessContent attribute shall be an attribute in the Markup Compatibility namespace with local name

“ProcessContent”. Its value shall be a whitespace-delimited list of zero or more tokens, optionally having

leading and/or trailing whitespace. Each token shall be a namespace prefix followed by “:” followed either by

ISO/IEC 29500-3:201x(E)

10 ©ISO/IEC 201x – All rights reserved

a local name or by “*”. For each token in the list, there shall be an in-scope namespace to which the

namespace-[JH9]prefix part of the token is bound. This in-scope namespace shall not be the Markup

Compatibility namespace,[JH10] and shall be declared as ignorable by an Ignorable attribute at the same

element or ancestor[JH11]. The pair of this in-scope namespace and the local part or “*” in this token is said to

be declared as a process content name pair by this ProcessContent attribute.

If (n1, l1) is the namespace-name and local-name pair of an element, that element matches a process content

name pair (n2, l2) if

1. n1 and n2 are the same sequence of characters, and

2. Either

a. l1 and l2 are the same sequence of characters, or

b. l2 is “*”

[Example:

<example xmlns:mce="http://schemas.openxmlformats.org/markup-

compatibility/2006">

 <foo1 mce:Ignorable="i1"

 mce:ProcessContent="i1:bar1"

 xmlns:i1="http://www.example.com/i1"

 xmlns:i2="http://www.example.com/i2">

 <foo2 mce:Ignorable="i2"

 mce:ProcessContent="i2:*">…</foo2>

 <foo3 mce:ProcessContent="i1:bar2">…</foo3>

 </foo1>

</example>

The foo1, foo2, and foo3 elements have ProcessContent attributes. That of the foo1 element has a token

"i1:bar1", where "i1" is a namespace prefix bound to an in-scope namespace "http://www.example.com/i1",

which is declared as ignorable at this element. That of the foo2 element has a token "i2:*", where i2 is a

namespace prefix bound to an in-scope namespace "http://www.example.com/i2", which is declared as

ignorable at this element. That of the foo3 element has a token "i1:bar2", where i1 is a namespace prefix

bound to an in-scope namespace "http://www.example.com/i1", which is declared as ignorable at the parent

foo1 element. end example]

[Example:

<example xmlns:mce="http://schemas.openxmlformats.org/markup-

compatibility/2006">

 <foo1 xmlns:i2="http://www.example.com/i2">

 <foo2 mce:ProcessContent="i2:*">…</foo2>

 </foo1>

</example>

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 11

The foo2 element has a ProcessContent attribute. The value is a token "i2:*", where i2 is a namespace prefix

bound to an in-scope namespace "http://www.example.com/i2". However, this namespace is not declared as

ignorable. As such, this example is non-conformant. end example]

[Example[JH12]:

In the following example, extB:Blink is ignorable and is identified by the ProcessContent attribute because

extA and extB share the same namespace name and therefore the expanded names match.

<example

 xmlns="http://schemas.openxmlformats.org/Circles/v1"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:extA="http://www.example.com/Circles/extension"

 xmlns:extB="http://www.example.com/Circles/extension"

 mc:Ignorable="extB"

 mc:ProcessContent="extA:Blink" >

 <extB:Blink>

 <Circle Center="0,0" Radius="20" Color="Blue" />

 </extB:Blink>

</example>

end example]

7.4 MustUnderstand Attribute

A MustUnderstand attribute shall be an attribute in the Markup Compatibility namespace with local name

“MustUnderstand”. Its value shall be a whitespace-delimited list of zero or more namespace prefixes

optionally having leading and/or trailing whitespace. For each namespace prefix in the list, there shall be an in-

scope namespace name to which that prefix is bound, and this namespace shall not be the Markup

Compatibility namespace. This in-scope namespace is said to be declared as a must-understand namespace by

this MustUnderstand attribute.

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:e1="http://www.example.com/e1"

 mce:MustUnderstand="e1">

</example>

In this example, the root element has a MustUnderstand attribute. The value contains e1, which is bound to

an in-scope namespace name "http://www.example.com/e1". end example]

[Example:

<example

http://schemas.openxmlformats.org/Circles/v1
http://schemas.openxmlformats.org/Circles/extension
http://schemas.openxmlformats.org/Circles/extension

ISO/IEC 29500-3:201x(E)

12 ©ISO/IEC 201x – All rights reserved

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:e1="http://www.example.com/e1">

 <foo mce:MustUnderstand="e1 e2"/>

</example>

In this example, the MustUnderstand attribute of the element foo contains e1 and e2. Although e1 is bound

to an in-scope namespace name "http://www.example.com/e1", e2 is not. As such, this document is non-

conformant. end example]

7.5 AlternateContent Element

An AlternateContent element shall be an element in the Markup Compatibility namespace with local name

“AlternateContent”. An AlternateContent element shall not have unqualified attributes, but may have

qualified attributes. The namespace of each qualified attribute shall be either the Markup Compatibility

namespace or a namespace declared as ignorable by the Ignorable attribute of this AlternateContent element

or one of its ancestors.

An AlternateContent element shall contain one or more Choice child elements, optionally followed by a single

Fallback child element. No other elements in the Markup Compatibility namespace may appear as child

elements. Elements in other namespaces may appear as preceding, intervening, or trailing child elements, but

the namespace of such a child element shall be declared as ignorable.

[Note: Ignorable elements are allowed as child elements of AlternateContent to allow for future extensions to

this construct. If AlternateContent were specified to contain only Choice and Fallback elements from the

Markup Compatibility namespace (§7.5), this would prevent the use of other Markup Compatibility elements

that would allow extension of AlternateContent in future versions of MCE. Any MCE processor that

encounters a child element of AlternateContent that is in the namespace of an intended future extension of

MCE will not fail to process the document, provided the namespace of this child element is ignorable, because

it will discard all elements in ignorable namespaces that are not understood before making a selection

between the remaining Choice and Fallback elements. end note]

[Note: The AlternateContent element can appear as the root element of a markup document. end note]

[Example:

<example[Delft13]

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:e1="http://www.example.com/e1"

 xmlns:e2="http://www.example.com/e2">

 <mce:AlternateContent mce:MustUnderstand="e1">

 <mce:Choice Requires="e2">…</mce:Choice>

 </mce:AlternateContent>

</example>

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 13

In this example, the AlternateContent element has a MustUnderstand attribute and no other attributes. The

AlternateContent element has a Choice element as a child but has no other child elements. end example]

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:i1="http://www.example.com/i1"

 xmlns:e1="http://www.example.com/e1">

 <mce:AlternateContent mce:Ignorable="i1" i1:foo="">

 <i1:bar/>

 <mce:Choice Requires="e1">…</mce:Choice>

 <i1:bar/>

 </mce:AlternateContent>

</example>

In this example, the AlternateContent element has an Ignorable attribute. The AlternateContent element

has a Choice element and elements from another namespace as children. Because the other elements are

declared as ignorable, this document is conformant. end example]

[Example:

<example[Delft14][JH15]

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:i1="http://www.example.com/i1"

 xmlns:e1="http://www.example.com/e1">

 <mce:AlternateContent i1:foo="">

 <i1:bar/>

 <mce:Choice Requires="e1">…</mce:Choice>

 <i1:bar/>

 </mce:AlternateContent>

</example>

This example differs from the previous one in that the Ignorable attribute has been removed. Neither the

i1:foo attribute nor the two i1:bar elements belong to ignorable namespaces, so this document is non-

conformant. end example]

7.6 Choice Element

A Choice element shall be an element in the Markup Compatibility namespace with local name “Choice”.

Parent elements of Choice elements shall be AlternateContent elements. A Choice element shall have an

unqualified attribute with local name “Requires” and shall have no other unqualified attributes. The value of

ISO/IEC 29500-3:201x(E)

14 ©ISO/IEC 201x – All rights reserved

the Requires attribute shall be a whitespace-delimited list of one or more namespace prefixes, optionally

having leading and/or trailing whitespace.

[Note: With the exception of empty lists, the syntactical constraints associated with the Requires attribute are

the same as those associated with the MustUnderstand attribute. end note]

A Choice element may have qualified attributes. The namespace of each qualified attribute shall be either the

Markup Compatibility namespace or a namespace declared as ignorable.

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:i1="http://www.example.com/i1"

 xmlns:e1="http://www.example.com/e1">

 <mce:AlternateContent mce:Ignorable="i1" >

 <mce:Choice Requires="e1" i1:foo="">…</mce:Choice>

 </mce:AlternateContent>

</example>

In this example, the Choice element specifies the i1:foo attribute. The namespace of this attribute is declared

as ignorable at the parent AlternateContent element. This document is conformant, but would be non-

conformant if the i1 namespace was not ignorable. end example]

7.7 Fallback Element

A Fallback element shall be an element in the Markup Compatibility namespace with local name “Fallback”.

Parent elements of Fallback elements shall be AlternateContent elements.

A Fallback element shall not have unqualified attributes. A Fallback element may have qualified attributes.

The namespace of each qualified attribute shall be either the Markup Compatibility namespace or a

namespace declared as ignorable.

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:i1="http://www.example.com/i1"

 xmlns:e1="http://www.example.com/e1">

 <mce:AlternateContent mce:Ignorable="i1" >

 <mce:Choice Requires="e1" >…</mce:Choice>

 <mce:Fallback i1:foo="">…</mce:Fallback>

 </mce:AlternateContent>

</example>

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 15

In this example, the Fallback element specifies the i1:foo attribute. The namespace of this attribute is

declared as ignorable at the parent AlternateContent element. This document is conformant but would be

non-conformant if the i1 namespace were not ignorable. end example]

ISO/IEC 29500-3:201x(E)

16 ©ISO/IEC 201x – All rights reserved

8. Application-Defined Extension Elements

A markup specification using MCE elements and attributes might designate one or more elements in the

namespaces it defines as application-defined extension elements. As described in §9, MCE processing is

effectively suspended within the content of these elements and they are passed through to the output

document generated by the MCE processor. No elements within the Markup Compatibility namespace shall be

designated as application-defined extension elements.

[Rationale: This mechanism is intended to, but not limited to, be used by markup specifications to create

extensibility points within the markup specification. end rationale]

[Note: If the markup specification includes a schema, an extension element might be constrained by the

schema to occur only in specific markup contexts. end note]

[Note: The content of an application-defined extension element might contain markup that uses MCE elements

and attributes. A consuming application might invoke an MCE processor to process the content of application-

defined extension elements contained in an output document constructed by an MCE processor. end note]

[Example:

<example

 xmlns:e1[JH16]="http://www.example.com/e1"

 xmlns:unknown="http://www.example.com/unknown">

 <e1:foo>

 <unknown:foo/>

 </e1:foo>

</example>

In this example, the e1:foo element contains the unknown:foo element. Suppose that an MCE processor’s

markup configuration contains the expanded name ("http://www.example.com/e1", "foo") and its application

configuration does not contain "http://www.example.com/unknown". Then, the element e1:foo is an

application-defined extension element. Although the unknown:foo element does not belong to an

understood or ignorable namespace, according to the semantic definitions in §9, the MCE processor does not

report the existence of that element as an error. end example]

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:i1="http://www.example.com/i1"

 xmlns:e1="http://www.example.com/e1">

 <extensionElement>

http://www.example.com/e1
http://www.example.com/unknown

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 17

 <foo1

 mce:Ignorable="i1"

 mce:ProcessContent="i1:bar1"

 mce:MustUnderstand="e1">

 </foo1>

 <mce:AlternateContent mce:Ignorable="i1" >

 <mce:Choice Requires="e1" >…</mce:Choice>

 <mce:Fallback i1:foo="">…</mce:Fallback>

 </mce:AlternateContent>

 </extensionElement>

</example>

In this example, MCE elements and attributes occur within the extensionElement element, which is the only

child of the root element example. Suppose that an MCE processor is configured to preserve extension

elements of an expanded name ("http://www.example.com/e1", "extensionElement"). Then, the MCE

processor preserves the extensionElement element. Therefore, MCE elements and attributes within it,

namely mce:Ignorable="i1", mce:ProcessContent="i1:bar1", mce:MustUnderstand="e1",

mce:AlternateContent, mce:Choice, and mce:Fallback, appear in the output document. end example]

After receiving the markup document constructed by an MCE processor, consuming applications may further

invoke an MCE processor to handle Markup Compatibility elements and attributes within extension elements.

[JH17]

ISO/IEC 29500-3:201x(E)

18 ©ISO/IEC 201x – All rights reserved

9. Semantic Definitions and Reference
Processing Model

9.1 Overview[rcj18]

For a given input document, markup configuration, and application configuration, this clause defines the

output document that shall be created by the MCE processor. The MCE processor is initialized with the markup

and application configuration. The markup configuration represents the set of expanded names that are to be

treated as those of application-defined extension elements. The application configuration represents the set of

namespaces that are to be treated as understood.

This clause further specifies the condition mismatches between a given input document, markup configuration,

and application configuration that shall be signaled by the MCE processor; however, it does not specify exactly

when or how such mismatches are to be signaled. If an MCE processor detects a mismatch, it shall signal this

mismatch to the consuming application and it may continue normal MCE processing. [Note: If a consuming

application is able to process elements and attributes that are in no namespace, this must be specified by the

application configuration. Implementers are reminded that there is no namespace name for elements and

attributes that are in no namespace, and are advised that they should take this into account when designing

MCE processors. end note]

This clause defines the semantics through the description of an abstract processing model, which has the

following four three steps:

[DRAFTING NOTE: Should the input and output of this processing model be Infosets as specified in W3C XML

Information Set? If we use it, in-scope namespaces are attached to all elements (by propagation). But

xml:base is not propagated in Infosets. Should rather use the RELAX NG data model (which propagates

xml:base) or other data models?][rcj19]

1. Step 1 defines which elements and attributes are marked as ignored or unwrapped. This definition

takes into consideration Ignorable and ProcessContent attributes, but does not take into

consideration MustUnderstand attributes or AlternateContent, Choice, or Fallback elements.

Elements or attributes inside application-defined extension elements are not marked as ignored or

unwrapped.

2. Step 2 defines the semantics of AlternateContent elements. It specifies which Choice or Fallback

element of each AlternateContent element is selected. This definition takes into consideration

AlternateContent, Choice, and Fallback elements, but does not take into consideration Ignorable,

ProcessContent, or MustUnderstand attributes. Choice or Fallback elements inside application-

defined extension elements are not marked as selected.

3. Step 3 applies the results from Steps 1 and 2 to construct the output document.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 19

4.3. Step 4, and furtheralso defines examines the semantics of MustUnderstand attributes. Neither

MustUnderstand attributes nor elements or attributes in namespaces that are neither ignorable nor

understood that exist unless they are inside application-defined extension elements are not examined.

However, MCE processors are not required to carry out these four three steps. MCE processors are

conformant as long as output documents created and mismatches signaled from given input documents,

markup configurations, and application configurations are consistent with those created and signaled by the

four three these steps.

[Note: Because Markup Compatibility processing is not performed inside application-defined extension

elements, an output document might still contain elements and attributes in the Markup Compatibility

namespace after Markup Compatibility processing has been applied. end note]

If an MCE processor detects that a document is non-conformant, the MCE processor should indicate this non-

conformance to the consuming application.

9.2 Step 1: Ignoring and Unwrapping

An element shall be marked as ignored if all of the following conditions are satisfied:

1. The namespace of this element is declared as ignorable by an Ignorable attribute of this element or of

some an ancestor element;

2. The namespace of this element is not included in the given application configuration;

3. This element does not match any process-content name pairs declared by this element or some

ancestor; and

4. This element is neither an application-defined extension element nor a descendant of an application-

defined extension element.

An attribute shall be marked as ignored if all of the following conditions are satisfied:

1. The namespace of this attribute is declared as ignorable by an Ignorable attribute of the element

having this attribute or of some an ancestor element;

2. The namespace of this attribute is not included in the given application configuration; and

3. This attribute does not belong to an application-defined extension element or a descendant of an

application-defined extension element

An element shall be marked as unwrapped if all the following conditions are satisfied:

1. The namespace of this element is declared as ignorable by an Ignorable attribute of this element or of

some ancestor element;

2. The namespace of this element is not included in the given application configuration;

3. This element matches a process-content name pair declared by this element or some ancestor; and

4. This element is neither an application-defined extension element nor a descendant of an application-

defined extension element.

An element marked as unwrapped shall not have an xml:base, xml:id, xml:lang or xml:space attribute.

ISO/IEC 29500-3:201x(E)

20 ©ISO/IEC 201x – All rights reserved

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:e1="http://www.example.com/e1"

 mce:Ignorable="e1"

 mce:ProcessContent="e1:bar"

 e1:foo="">

 <e1:foo><fooChild/></e1:foo>

 <e1:bar><barChild/></e1:bar>

 <e1:baz e1:baz=""><e1:bazChild/></e1:baz>

</example>

The namespace "http://www.example.com/e1" is declared as ignorable. A pair

("http://www.example.com/e1", bar) is declared as a process content name pair. Suppose that a given

markup configuration is a singleton containing ("http://www.example.com/e1", baz) and that a given

application configuration does not contain "http://www.example.com/e1". Then, the e1:foo attribute and the

e1:foo element are marked as ignored, and the e1:bar element is marked as unwrapped. However, the

e1:baz element is not marked as either ignored or unwrapped, as it is an application-defined extension

element. Likewise, neither the e1:baz attribute nor the e1:bazChild element are marked. Neither fooChild

nor barChild are marked as ignored or unwrapped although their parents are marked as ignored or

unwrapped. end example]

9.3 Step 2: Selecting Alternates

[DRAFTING NOTE: Are AlternateContent elements allowed to have attributes of ignorable and understood

namespace names (in other words, should we consider application configurations)? Or, should we allow

namespaces for future versions of MCE only, and disallow MCE application configurations to contain such

namespaces?][rcj20]

[DRAFTING NOTE: The same concern here. Are AlternateContent elements allowed to have elements of

ignorable and understood namespace names (in other words, should we consider MCE application

configurations)?] [rcj21]

A Choice element shall be marked as selected if the following conditions are satisfied:

1. Each of the namespaces specified by the Requires attribute of this element is included in the given

application configuration;

2. No elder-sibling Choice element is marked as selected; and

3. The element is not a descendant of an application-defined extension element.

A Fallback element shall be marked as selected if the following conditions are satisfied:

1. No elder-sibling Choice element is marked as selected; and

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 21

2. The element is not a descendant of an application-defined extension element.

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:n1="http://www.example.com/n1"

 xmlns:n2="http://www.example.com/n2"

 xmlns:n3="http://www.example.com/n3">

 <mce:AlternateContent>

 <mce:Choice Requires="n1 n2"> <!-- Choice #1 -->

 <mce:AlternateContent>

 <mce:Choice Requires="n3">...</mce:Choice> <!-- Choice #1-1 -->

 <mce:Fallback>...</mce:Fallback> <!-- Fallback #1-1 -->

 </mce:AlternateContent>

 </mce:Choice>

 <mce:Choice Requires="n1"> <!-- Choice #2 -->

 <mce:AlternateContent>

 <mce:Choice Requires="n3">...</mce:Choice> <!-- Choice #2-1 -->

 <mce:Fallback>...</mce:Fallback> <!-- Fallback #2-1 -->

 </mce:AlternateContent>

 </mce:Choice>

 <mce:Fallback>...</mce:Fallback> <!-- Fallback #1 -->

 </mce:AlternateContent>

</example>

The child of the root element is an AlternateContent element. Suppose that an application configuration

contains three namespaces, namely “http://www.example.com/n1”, “http://www.example.com/n2”, and

http://www.example.com/n3. Then Choice #1, Choice #1-1, and Choice #2-1 are marked as selected, and

Choice #2, Fallback #1, Fallback #1-1, and Fallback #2-1 are not. Note that Choice #2-1, which is marked as

selected, appears under Choice #2, which is not.

Suppose that an application configuration contains two namespaces, namely “http://www.example.com/n1”

and “http://www.example.com/n2”, but not “http://www.example.com/n3”. Then, Choice #1, Fallback #1-1,

and Fallback #2-1 are marked as selected. end example]

[DRAFTING NOTE: Can elements marked as unwrapped specify xml:lang and xml:base? If they are prohibited,

what about xml:base and other inherited attributes in markup vocabularies?][rcj22]

[DRAFTING NOTE: Can elements marked as unwrapped specify @Ignorable, @ProcessContent,

@MustUnderstand?][rcj23]

9.4 Step 3: Combining Ignoring and Selecting[Delft24]Creating output

documents and examining MustUnderstand attributes

ISO/IEC 29500-3:201x(E)

22 ©ISO/IEC 201x – All rights reserved

In Step 3, the output document shall be constructed by modifying the input document with the following

procedure. It is top-down recursive and begins with the root element.

For each element in the input document, if the element is:

1. Case 1: an element mMarked as ignored:

a. Remove this element together with its attributes and contents.

2. Case 2: an element mMarked as unwrapped:

a. Replace this element with the content of this element. [Note: The attributes of this element will be

lost. end note.]

b. Examine each MustUnderstand attribute of this element. If anysome of the namespaces declared

by this attribute are not in the application configuration, signal a mismatch.

c. Recursively apply this procedure to each child of this element[JH25]

3. Case 3: aAn AlternateContent element that is neither an application-defined extension element nor a

descendant of such an element:

a. If anysome child element of this AlternateContent element is neither a Choice nor a Fallback

element, and is not marked as ignored, signal a mismatch.

b. If none of the child Choice or Fallback elements is marked as selected, remove this

AlternateContent element and its contents. If a child Choice or Fallback element is marked as

selected, replace this AlternateContent element withby the content of thethis Choice or Fallback

element marked as selected.

c. Examine the MustUnderstand attribute of this AlternateContent element and that of the Choice

or Fallback element marked as selected, if any. If anysome of the namespaces declared by these

attributes are not in the application configuration, signal a mismatch.

d. Recursively apply this procedure to each child element of the Choice or Fallback element marked

as selected, if any.[JH26]

4. Case 4: aAn application-defined extension element

a. Include theUse this element as is in the output document.

5. Case 5: oOtherwise

a. Remove Ignorable, and ProcessContent , and MustUnderstand attributes as well as attributes

marked as ignored.

 Recursively apply this procedure to each child of this element.

b.

 This step constructs an output document based on Steps 1 and 2. The output document is identical to the

input document except that:

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 23

1. Each element marked as ignored, together with its attributes and contents, shall be removed.

2. Each element marked as unwrapped shall be replaced by its content. [Note: The attributes will be lost.

end note.]

3. Each MustUnderstand attribute at such an element shall be examined as specified in Step 4

before it is unwrapped.[rcj27]

4. Each attribute marked as ignored shall be removed.

5. Unless it belongs to an application-defined extension element or its descendant, Eeach Ignorable and

ProcessContent attribute shall be removed unless it belongs to an application-defined extension

element or its descendant.

6. Except when it is a descendant of an application-defined extension element, Eeach AlternateContent

element shall be replaced by the content of the selected child Choice or Fallback element that is

marked as selected if there is one such a selected child, and shall be deleted otherwise.

7. Each MustUnderstand attribute at this AlternateContent element and the selected Choice or

Fallback element shall be examined as specified in Step 4 before this AlternateContent is

replaced.[rcj28]

8. If some child element of this AlternateContent element is not marked as ignored and is neither

Choice nor Fallback element, a mismatch shall be signaled.

[Note: The content of a selected Choice or Fallback element does not appear in the output document if

anysome ancestor of this element is ignored or anysome ancestor Choice or Fallback element is not selected.

end note]

[Note: Output documents might contain attributes or elements in namespaces that are not contained in the

application configuration. end note]

[Note: With the exception of those within application-defined extension elements, elements and attributes in

the Markup Compatibility namespace do not appear in the output document. end note]

[DRAFTING NOTE: Should we mention namespace declarations at unwrapped elements, AlternateContent,

Choice, and Fallback elements? WG4 is leaning toward infoset-like data models, which propagate namespace

declarations.][rcj29]

[DRAFTING NOTE: If we stick to the current semantics that allow @MustUnderstand attributes at unwrapped

elements and ACBs, we cannot strikeout the sub-bullet under the 2nd bullet and the 1st sub-bullet under the

5th bullet.][rcj30]

[Example:

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:foo="http://www.example.com/foo"

 xmlns:bar="http://www.example.com/bar"

 mce:Ignorable="foo bar"

ISO/IEC 29500-3:201x(E)

24 ©ISO/IEC 201x – All rights reserved

 mce:ProcessContent="foo:unwrapped">

 <mce:AlternateContent>

 <!-- Choice #1 -->

 <mce:Choice Requires="foo"> <!-- Choice #1 -->

 <!-- Foo #1 -->

 <foo:foo/> <!-- Foo #1 -->

 <!-- Bar #1 -->

 <bar:bar> <!-- Bar #1 -->

 <mce:AlternateContent>

 <!-- Choice #1-1 -->

 <mce:Choice Requires="bar"> <!-- Choice

#1-1 -->

 <Choice1-1/>

 </mce:Choice>

 <!-- Fallback #1-1 -->

 <mce:fallback> <!--

Fallback #1-1 -->

 <Fallback1-1/>

 </mce:fallback>

 </mce:AlternateContent>

 </bar:bar>

 </mce:Choice>

 <!-- Choice #2 -->

 <mce:Choice Requires="bar"> <!-- Choice #2 -->

 <!-- Bar #2 -->

 <bar:bar/> <!-- Bar #2 -->

 <!-- Foo #2 -->

 <foo:unwrapped> <!-- Foo #2 -->

 <mce:AlternateContent>

 <!-- Choice #2-1 -->

 <mce:Choice Requires="foo"> <!-- Choice

#2-1 -->

 <Choice2-1/>

 </mce:Choice>

 <!-- Fallback #2-1 -->

 <mce:fallbackFallback>

<!-- Fallback #2-1 -->

 <Fallback2-1/>

 </mce:fallbackFallback>

 </mce:AlternateContent>

 </foo:unwrapped>

 </mce:Choice>

 </mce:AlternateContent>

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 25

</example>

Suppose that an application configuration contains a namespace, namely http://www.example.com/foo. In

Step 1, Bar #1 and Bar #2 are marked as ignored. In Step 2, Choice #1, Fallback #1-1, and Choice #2-1 are

marked as selected. However, in Step 3, the content of Fallback #1-1 is discarded, since Bar #1 is marked as

ignored. Likewise, the content of Choice #2-1 is discarded, since Choice #2 is not marked as selected. In Step 3,

Bar #1 and its contents, including Fallback #1-1, are discarded. Thus, the following output document is

constructed.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Id -->

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:foo="http://www.example.com/foo"

 xmlns:bar="http://www.example.com/bar"

 <foo:foo/>

</example>

Suppose that an application configuration contains a namespace, namely http://www.example.com/bar. In

Step 1, Foo #1 is marked as ignored, while Foo #2 is marked as unwrapped. In Step 2, Choice #1-1, Choice #2,

and Fallback #2-1 are marked as selected. However, in Step 3, the content of Choice #1-1 is discarded, since

Choice #1 is not marked as selected. Since Foo #2 is marked as unwrapped, the content of Fallback #2-1 is not

discarded. Thus, the following output document is constructed.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Id -->

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:foo="http://www.example.com/foo"

 xmlns:bar="http://www.example.com/bar"

 <bar:bar/>

 <Fallback2-1/>

</example>

Suppose that an application configuration contains two namespaces, namely http://www.example.com/foo

and http://www.example.com/bar. In Step 1, no elements or attributes are marked as ignored or unwrapped.

In Step 2, Choice #1, Choice #1-1, and Choice #2-1 are marked as selected. However, in Step 3, the content of

Choice #2-1 is discarded, since Choice #2 is not marked as selected. Thus, the following output document is

constructed.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Id -->

<example

 xmlns:mce="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:foo="http://www.example.com/foo"

http://www.example.com/foo
http://www.example.com/bar
http://www.example.com/foo
http://www.example.com/bar

ISO/IEC 29500-3:201x(E)

26 ©ISO/IEC 201x – All rights reserved

 xmlns:bar="http://www.example.com/bar"

 <foo:foo/>

 <bar:bar>

 <Choice1-1/>

 </bar:bar>

</example>

end example]

9.5 Step 4: Checking MustUnderstand and Non-Ignorable/Non-

Understood Namespaces

Each MustUnderstand attribute is examined unless it belongs to an application-defined extension element or

descendant of an application-defined extension element. If some of the namespaces declared by this attribute

are not in the application configuration, a mismatch shall be signaled. Each of the examined MustUnderstand

attributes shall then be deleted.

[Note: Output documents might contain attributes or elements in namespaces that are not contained in the

application configuration. end note]

Each element is examined unless it is an application-defined extension element or a descendant of an

application-defined extension element. If the namespace of this element is not included in the application

configuration, a mismatch shall be signaled.

Each qualified attribute is examined unless it belongs to an application-defined extension element or a

descendant of an application-defined extension element. If the namespace of this qualified attribute is not

included in the application configuration, a mismatch shall be signaled.

[Note: With the exception of those in application-defined extension elements, elements and attributes in the

Markup Compatibility namespace do not appear in the output document. With the exception of those in

application-defined extension elements, elements and attributes in the output document belong to

understood namespaces. end note]

[DRAFTING NOTE: Should we mention namespace declarations at unwrapped elements, AlternateContent,

Choice, and Fallback elements? WG4 is leaning toward infoset-like data models, which propagate namespace

declarations.][rcj31]

End of informative text.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 27

Annex A.
(informative)

Examples

This annex is informative.

A.1 Example: Ignorable Attribute

This example shows how to use the Ignorable attribute to define ignorable namespaces and how MCE

processors with different application configurations process the example input document.

Input document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:v3="http://www.example.com/Circles/v3"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="v2 v3">

 <Circle Center="0,0" Radius="20" Color="Blue"

 v2:Opacity="0.5" v3:Luminance="13"/>

<Circles>

Three namespaces in this document, namely “http://www.example.com/Circles/v1”,

“http://www.example.com/Circles/v2”, and “http://www.example.com/Circles/v3” capture three versions of a

markup specification. Version 1 introduces Circle elements of the namespace for version 1. Version 2

introduces the Opacity attribute of the namespace for version 2. Version 3 introduces the Luminance

attribute of the namespace for version 3. In this document, both the namespace for version 2 and that for

version 3 are declared as ignorable.

First, suppose that the application configuration contains the namespaces for versions 1, 2, and 3. Then, the

output document contains the Opacity and Luminance attributes.

Output document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:v3="http://www.example.com/Circles/v3">

ISO/IEC 29500-3:201x(E)

28 ©ISO/IEC 201x – All rights reserved

 <Circle Center="0,0" Radius="20" Color="Blue"

 v2:Opacity="0.5"

 v3:Luminance="13"/>

</Circles>

Second, suppose that the application configuration contains the namespaces for versions 1 and 2 but not the

one for version 3. Then, the output document contains the Opacity attribute but does not contain the

Luminance attribute.

Output document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2">

 <Circle Center="0,0" Radius="20" Color="Blue"

 v2:Opacity="0.5"/>

</Circles>

Third, suppose that the application configuration contains the namespace for version 1 but not those for

versions 2 or 3. In this case, the output document contains neither the Opacity attribute nor the Luminance

attribute.

Output document:

<Circles xmlns="http://www.example.com/Circles/v1">

 <Circle Center="0,0" Radius="20" Color="Blue"/>

</Circles>

A.2 Example: Ignorable and ProcessContent Attributes

This example shows how to use the ProcessContent attribute to process child elements within ignorable

elements and how MCE processors with different application configurations process the example input

document.

Input document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

http://schemas.openxmlformats.org/Circles/v1
http://schemas.openxmlformats.org/Circles/v2
http://schemas.openxmlformats.org/markup-%20%20compatibility/2006

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 29

 mc:Ignorable="v2"

 mc:ProcessContent="v2:Blink">

 <v2:Watermark Opacity="v0.1">

 <Circle Center="0,0" Radius="20" Color="Blue"/>

 </v2:Watermark>

 <v2:Blink>

 <Circle Center="13,0" Radius="20" Color="Yellow"/>

 </v2:Blink>

</Circles>

Two namespaces in this document, namely “http://www.example.com/Circles/v1” and

“http://www.example.com/Circles/v2”, represent two versions of a markup specification. Version 1

introduces Circles and Circle elements of the namespace for version 1. Version 2 introduces Watermark and

Blink elements of the namespace for version 2. The namespace for version 2 is declared as ignorable and the

Blink element matches a process content name pair (“http://www.example.com/Circles/v2”, Blink) declared

at the root element.

First, suppose that an application configuration contains the namespaces for Versions 1 and 2. Then, the

output document contains all elements in the input document.

Output document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2">

 <v2:Watermark Opacity="v0.1">

 <Circle Center="0,0" Radius="20" Color="Blue"/>

 </v2:Watermark>

 <v2:Blink>

 <Circle Center="13,0" Radius="20" Color="Yellow"/>

 </v2:Blink>

</Circles>

Second, suppose that an application configuration contains the namespace for version 1 but not the one for

version 2. Then, the output document does not contain the Watermark and Blink elements, which are of the

namespace for version 2. However, the content of the Blink element is retained, since this element matches a

declared process content name pair.

Output document:

ISO/IEC 29500-3:201x(E)

30 ©ISO/IEC 201x – All rights reserved

<Circles

 xmlns="http://www.example.com/Circles/v1">

 <Circle Center="13,0" Radius="20" Color="Yellow"/>

</Circles>

A.3 Example: Non-Ignorable and Non-Understood Namespace

This example shows the basic handling of namespaces by MCE processors with different configurations.

Input document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006">

 <Circle Center="0,0" Radius="20" Color="Blue" v2:Opacity="0.5" />

</Circles>

Two namespaces in this document, namely “http://www.example.com/Circles/v1” and

“http://www.example.com/Circles/v2”, represent two versions of a markup specification. Version 1

introduces Circles and Circle elements of the namespace for version 1. Version 2 introduces an Opacity

attribute of the namespace for version 2.

First, suppose that an application configuration contains the namespaces for versions 1 and 2. Then, the

output document is identical to the input document, with the possible exception of omitting the declaration of

the Markup Compatibility namespace.

Second, suppose that an application configuration contains the namespace for version 1 but not the one for

version 2. Then, the MCE processor will report a mismatch when the Opacity attribute is examined in Step 4

(§1.1).

A.4 Example: MustUnderstand Attribute

This example shows how to use the MustUnderstand attribute to require handling of namespaces and how

MCE processors with different application configurations process the example input document.

Input document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:MustUnderstand="v2">

 <Circle Center="0,0" Radius="20" Color="Blue" v2:Opacity="0.5" />

http://schemas.openxmlformats.org/Circles/v1
http://schemas.openxmlformats.org/markup-compatibility/2006

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 31

</Circles>

This document is similar to the previous example. The only difference is the addition of the MustUnderstand

attribute at the root element.

The MCE processor behaves the same, except that a mismatch is signaled (§1.1) if the application configuration

does not contain the namespace "http://www.example.com/Circles/v2".

A.5 Example: AlternateContent Element

This example shows how to use AlternateContent, Choice and Fallback elements to specify alternate

representations of content and how MCE processors with different application configurations process the

example input document.

Input document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:v3="http://www.example.com/Circles/v3"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="v2 v3">

 <mc:AlternateContent>

 <mc:Choice Requires="v3">

 <v3:Circle Center="0,0" Radius="20" Color="Blue"

 Opacity="0.5" Luminance="13"/>

 </mc:Choice>

 <mc:Fallback>

 <LuminanceFilter Luminance="13">

 <Circle Center="0,0" Radius="20" Color="Blue"

 v2:Opacity="0.5"/>

 </LuminanceFilter>

 </mc:Fallback>

 </mc:AlternateContent>

</Circles>

Three namespaces in this document, namely "http://www.example.com/Circles/v1",

"http://www.example.com/Circles/v2", and "http://www.example.com/Circles/v3" capture three versions of a

markup specification. Version 1 introduces LuminanceFilter and Circle elements of the namespace for

version 1. Version 2 introduces the Opacity attribute of the namespace for version 2. Version 3 introduces

Circle elements of the namespace for version 3. Both the namespace for version 2 and that for version 3 are

declared as ignorable.

http://www.example.com/Circles/v2

ISO/IEC 29500-3:201x(E)

32 ©ISO/IEC 201x – All rights reserved

First, suppose that the application configuration contains the namespaces for versions 1, 2, and 3. Then, since

the Choice element is selected, the output document contains Circle elements of the namespace for version 3

but does not contain the LuminanceFilter element.

Output document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2"

 xmlns:v3="http://www.example.com/Circles/v3"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="v2 v3">

 <v3:Circle Center="0,0" Radius="20" Color="Blue"

 Opacity="0.5" Luminance="13"/>

</Circles>

Second, suppose that the application configuration contains the namespaces for versions 1 and 2 but not the

one for version 3. Then, since the Fallback element is selected, the output document contains the

LuminanceFilter and Circle elements of the namespace for version 1 but does not contain Circle elements of

that for version 3. The Opacity attribute is not removed, since the application configuration contains the

namespace for version 2.

Output document:

<Circles

 xmlns="http://www.example.com/Circles/v1"

 xmlns:v2="http://www.example.com/Circles/v2">

 <LuminanceFilter Luminance="13">

 <Circle Center="0,0" Radius="20" Color="Blue"

 v2:Opacity="0.5"/>

 </LuminanceFilter>

</Circles>

Third, suppose that the application configuration contains the namespace for version 1 but not those for

versions 2 or 3. Then, since the Fallback element is selected, the output document contains the

LuminanceFilter element and Circle elements of the namespace for version 1 but does not contain Circle

elements of that for version 3. Furthermore, since the application configuration does not contain the

namespace for version 2, the Opacity attribute is removed.

Output document:

https://www.assembla.com/wiki/show/IS29500/LuminanceFilter
https://www.assembla.com/wiki/show/IS29500/LuminanceFilter

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 33

<Circles

 xmlns="http://www.example.com/Circles/v1">

 <LuminanceFilter Luminance="13">

 <Circle Center="0,0" Radius="20" Color="Blue"/>

 </LuminanceFilter>

</Circles>

A.6 Example: Ignorable Content Inside Application-Defined Extension

Elements

This example shows how to use ignorable content in application-defined extension elements in order to

further extend an existing extension.

ChrisOffice v1 is a hypothetical implementation of ISO/IEC 29500 that allows sound effects to be applied to

existing SpreadsheetML conditional formatting. This data is stored inside application-defined extension

elements in order that other ISO/IEC 29500-conformant applications can round-trip that data, and in

SpreadsheetML, an application-defined extension element (extLst) is already defined under the

conditionalFormattingElements element.

ChrisOffice v2 adds the ability to use video as well as audio. To allow ChrisOffice v1 to understand everything

except the video, a different namespace must be used to avoid ChrisOffice discovering unknown content in

understood namespaces. In this example, ChrisOffice v1 doesn’t have its own extension elements within

extension elements, so the extra content is ignorable in order that ChrisOffice v1 discards it upon load.

Input document:

…

<conditionalFormattingElements>

 <extLst>

 <ext uri="myurl" xmlns:co1="http://chrisoffice/v1">

 <co1:soundeffect mc:Ignorable="co2" xmlns:co2="http://chrisoffice/v2">

 <co1:sourceFile>moo.mp3</co1:sourceFile>

 <co2:sourceVideo>cow.mpg</co2:sourceFile>

 </co1:soundeffect>

 </ext>

 </extLst>

</conditionalFormattingElements>

…

ChrisOffice v1 will discard the video when it reads the file. Because processing of MCE constructs is not

permitted inside application-defined extension elements, applications that do not understand the original

sound effect construct will not needlessly throw away the entire extension element including the new video

content. Because the extension element is understood by ChrisOffice v1, and the format of that extension

ISO/IEC 29500-3:201x(E)

34 ©ISO/IEC 201x – All rights reserved

element is known to contain further MCE constructs, ChrisOffice will subsequently invoke an MCE processor to

process the content of that extension element and discard the video when it reads the file since the co2

namespace is declared as ignorable.

Output document (ChrisOffice v1):

…

<conditionalFormattingElements>

 <extLst>

 <ext uri="myurl" xmlns:co1="http://chrisoffice/v1">

 <co1:soundeffect mc:Ignorable="co2" xmlns:co2="http://chrisoffice/v2">

 <co1:sourceFile>moo.mp3</co1:sourceFile>

 </co1:soundeffect>

 </ext>

 </extLst>

</conditionalFormattingElements>

…

End of informative text.

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 35

Annex B.
(informative)

Validation Using NVDL

This annex is informative.

Namespace-based Validation Dispatching Language (NVDL) allows documents to be decomposed into

validation candidates, each of which can be validated independently.

A markup document can satisfy requirements of this Part without being an Office Open XML document. The

following NVDL script examines whether a given document correctly uses the attributes and elements as

defined by this Part of ISO/IEC 29500.

This NVDL script first extracts elements and attributes in the Markup Compatibility namespace, and then

validates them against the appropriate RELAX NG schemas.

Note that AlternateContent, Choice and Fallback elements are allowed to have foreign elements and

attributes.

<?xml version="1.0" encoding="UTF-8"?>

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

 <namespace match="attributes" ns="http://schemas.openxmlformats.org/markup-

 compatibility/2006">

 <validate schemaType="application/relax-ng-compact-syntax">

 <schema>

 namespace mc="http://schemas.openxmlformats.org/markup-

 compatibility/2006"

 nsList = list { xsd:NCName* }

 qnameList = list { (xsd:QName | xsd:string {pattern = "\i\c*:*" })*}

 start = element * {

 attribute mc:Ignorable { nsList }?,

 attribute mc:ProcessContent { qnameList }?,

 attribute mc:MustUnderstand { nsList }?

 }

 </schema>

 </validate>

 </namespace>

 <namespace match="elements" ns="http://schemas.openxmlformats.org/markup-

 compatibility/2006">

 <validate schemaType="application/relax-ng-compact-syntax">

http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0
http://schemas.openxmlformats.org/markup-%20%20%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20%20%20%20%20%20%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20%20%20%20%20%20%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20compatibility/2006

ISO/IEC 29500-3:201x(E)

36 ©ISO/IEC 201x – All rights reserved

 <schema>

 default namespace ="http://schemas.openxmlformats.org/markup-

 compatibility/2006"

 nsList = list { xsd:NCName* }

 qnameList = list { (xsd:QName | xsd:string {pattern = "\i\c*:*" })*}

 start = element AlternateContent {choice+,fallback?}

 choice = element Choice {attribute Requires { nsList }, text}

 fallback = element Fallback {text}

 </schema>

 </validate>

 </namespace>

 <namespace ns="" match="attributes">

 <attach/>

 </namespace>

 <anyNamespace match="elements attributes">

 <allow/>

 </anyNamespace>

</rules>

The two RELAX NG schemas embedded in the above NVDL script can be rewritten in the analogous XML

Schema form.

End of informative text.

http://schemas.openxmlformats.org/markup-%20%20%20%20%20%20%20%20%20%20compatibility/2006
http://schemas.openxmlformats.org/markup-%20%20%20%20%20%20%20%20%20%20compatibility/2006

ISO/IEC 29500-3:201x(E)

©ISO/IEC 201x – All rights reserved 37

Bibliography

The following documents are useful references for implementers and users of this International Standard, in

addition to the Normative References:

ISO/IEC 19757-2:2008, Information technology — Document Schema Definition Language (DSDL) — Part 2:

Regular-grammar-based validation — RELAX NG

ISO/IEC 19757-4:2006, Information technology — Document Schema Definition Languages (DSDL) — Part 4:

Namespace-based Validation Dispatching Language (NVDL).

ISO/IEC 29500-1:2012, Information technology — Document description and processing languages — Office

Open XML File Formats, Part 1: Fundamentals and Markup Language Reference.

ISO/IEC 29500-4:2012, Information technology — Document description and processing languages — Office

Open XML File Formats, Part 4: Transitional Migration Features.

XML Schema Part 0: Primer (Second Edition), W3C Recommendation 28 October 2004,

http://www.w3.org/TR/xmlschema-0/

XML Schema Part 1: Structures (Second Edition), W3C Recommendation 28 October 2004,

http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Datatypes (Second Edition), W3C Recommendation 28 October 2004,

http://www.w3.org/TR/xmlschema-2/

	Contents
	Foreword
	Introduction
	1. Scope
	2. Normative References
	3. Terms and Definitions
	4. Notational Conventions
	5. General Description
	6. Overview
	7. MCE Elements and Attributes
	7.1 Introduction
	7.2 Ignorable Attribute
	7.3 ProcessContent Attribute
	7.4 MustUnderstand Attribute
	7.5 AlternateContent Element
	7.6 Choice Element
	7.7 Fallback Element

	8. Application-Defined Extension Elements
	9. Semantic Definitions and Reference Processing Model
	9.1 Overview
	9.2 Step 1: Ignoring and Unwrapping
	9.3 Step 2: Selecting Alternates
	9.4 Step 3: Combining Ignoring and Selecting Creating output documents and examining MustUnderstand attributes
	1.1 Step 4: Checking MustUnderstand and Non-Ignorable/Non-Understood Namespaces

	Annex A. (informative) Examples
	A.1 Example: Ignorable Attribute
	A.2 Example: Ignorable and ProcessContent Attributes
	A.3 Example: Non-Ignorable and Non-Understood Namespace
	A.4 Example: MustUnderstand Attribute
	A.5 Example: AlternateContent Element
	A.6 Example: Ignorable Content Inside Application-Defined Extension Elements

	Annex B. (informative) Validation Using NVDL
	Bibliography

