File: APPNOTE.TXT - .ZIP File Format Specification
Version: 6.3.3
Status: Final - replaces version 6.3.2.0 - NOTIFICATION OF CHANGE

Revised: 04/26/2004September 1, 2012
Copyright (c) 1989 - 20042012 PKWARE Inc., All Rights Reserved.

I.1.0 Introduction

1.1 Purpose

 1.1.1 This specification is intended to define a cross-platform,
 interoperable file storage and transfer format. Since its
 first publication
[bookmark: _GoBack] in 1989, PKWARE, Inc. ("PKWARE") has remained
 committed to ensuring the
interoperability of the .ZIP file
 format through periodic publication and maintenance of this

 specification. We trust that all .ZIP compatible vendors
 and
 application developers that have adopteduse and benefit from this format

 will share and support this commitment.

II. to interoperability.

1.2 Scope

 1.2.1 ZIP is one of the most widely used compressed file formats. It is
 universally used to aggregate, compress, and encrypt files into a single
 interoperable container. No specific use or application need is
 defined by this format and no specific implementation guidance is
 provided. This document provides details on the storage format for
 creating ZIP files. Information is provided on the records and
 fields that describe what a ZIP file is.

1.3 Trademarks

 1.3.1 PKWARE, PKZIP, SecureZIP, and PKSFX are registered trademarks of
 PKWARE, Inc. in the United States and elsewhere. PKPatchMaker,
 Deflate64, and ZIP64 are trademarks of PKWARE, Inc. Other marks
 referenced within this document appear for identification
 purposes only and are the property of their respective owners.

1.4 Permitted Use

 1.4.1 This document, "APPNOTE.TXT - .ZIP File Format Specification" is the
 exclusive property of PKWARE. Use of the information contained in this
 document is permitted solely for the purpose of creating products,
 programs and processes that read and write files in the ZIP format
 subject to the terms and conditions herein.

 1.4.2 Use of the content of this document within other publications is
 permitted only through reference to this document. Any reproduction
 or distribution of this document in whole or in part without prior
 written permission from PKWARE is strictly prohibited.

 1.4.3 Certain technological components provided in this document are the
 patented proprietary technology of PKWARE and as such require a
 separate, executed license agreement from PKWARE. Applicable
 components are marked with the following, or similar, statement:
 'Refer to the section in this document entitled "Incorporating
 PKWARE Proprietary Technology into Your Product" for more information'.

1.5 Contacting PKWARE

 1.5.1 If you have questions on this format, its use, or licensing, or if you
 wish to report defects, request changes or additions, please contact:

 PKWARE, Inc.
 648 N. Plankinton Avenue, Suite 220
 Milwaukee, WI 53203
 +1-414-289-9788
 +1-414-289-9789 FAX
 zipformat@pkware.com

 1.5.2 Information about this format and copies of this document are publicly
 available at:

 http://www.pkware.com/appnote

1.6 Disclaimer

 1.6.1 Although PKWARE will attempt to supply current and accurate
 information relating to its file formats, algorithms, and the
 subject programs, the possibility of error or omission can not
cannot
 be eliminated. PKWARE therefore expressly disclaims any warranty
 that the information contained in the associated materials relating
 to the subject programs and/or the format of the files created or
 accessed by the subject programs and/or the algorithms used by
 the subject programs, or any other matter, is current, correct or
 accurate as delivered. Any risk of damage due to any possible
 inaccurate information is assumed by the user of the information.
 Furthermore, the information relating to the subject programs
 and/or the file formats created or accessed by the subject
 programs and/or the algorithms used by the subject programs is
 subject to change without notice.

2.0 Revisions

2.1 Document Status

 2.1.1 If the versionSTATUS of this file is marked as a NOTIFICATION OF CHANGE,
DRAFT, the content
 defines an Early Feature Specification (EFS) change
proposed revisions to this specification which may consist
 of changes to the .ZIP file format itself, or that may consist of other
 content changes to this document. Versions of this document and
 the format in DRAFT form may be subject to modification prior
to
 publication of the Final Feature Specification (FFS). This
STATUS of FINAL. DRAFT versions are published periodically
 to provide notification to the ZIP community of pending changes and to
 provide opportunity for review and comment.

 2.1.2 Versions of this document may also contain information on Planned Feature
Specifications (PFS) defining recognized future extensions.

III.having a STATUS of FINAL are
 considered to be in the final form for that version of the document
 and are not subject to further change until a new, higher version
 numbered document is published. Newer versions of this format
 specification are intended to remain interoperable with with all prior
 versions whenever technically possible.

2.2 Change Log

 Version Change Description Date
------- ------------------ ----------
 ------- ------------------ ----------
 5.2 -Single Password Symmetric Encryption 07/16/2003
 storage

 6.1.0 -Smart CardSmartcard compatibility 01/20/2004
 -Documentation on certificate storage

 6.2.0 -Introduction of Central Directory 04/26/2004
 Encryption for encrypting metadata
 -Added OS/ X to Version Made By values

VI. 6.2.1 -Added Extra Field placeholder for 04/01/2005
 POSZIP using ID 0x4690

 -Clarified size field on
 "zip64 end of central directory record"

 6.2.2 -Documented Final Feature Specification 01/06/2006
 for Strong Encryption

 -Clarifications and typographical
 corrections

 6.3.0 -Added tape positioning storage 09/29/2006
 parameters

 -Expanded list of supported hash algorithms

 -Expanded list of supported compression
 algorithms

 -Expanded list of supported encryption
 algorithms

 -Added option for Unicode filename
 storage

 -Clarifications for consistent use
 of Data Descriptor records

 -Added additional "Extra Field"
 definitions

 6.3.1 -Corrected standard hash values for 04/11/2007
 SHA-256/384/512

 6.3.2 -Added compression method 97 09/28/2007

 -Documented InfoZIP "Extra Field"
 values for UTF-8 file name and
 file comment storage

 6.3.3 -Formatting changes to support 09/01/2012
 easier referencing of this APPNOTE
 from other documents and standards

3.0 Notations

 3.1 Use of the term MUST or SHALL indicates a required element.

 3.2 MAY NOT or SHALL NOT indicates an element is prohibited from use.

 3.3 SHOULD indicates a RECOMMENDED element.

 3.4 SHOULD NOT indicates an element NOT RECOMMENDED for use.

 3.5 MAY indicates an OPTIONAL element.

4.0 ZIP Files

4.1 What is a ZIP file

 4.1.1 ZIP files MAY be identified by the standard .ZIP file extension
 although use of a file extension is not required. Use of the
 extension .ZIPX is also recognized and MAY be used for ZIP files.
 Other common file extensions using the ZIP format include .JAR, .WAR,
 .DOCX, .XLXS, .PPTX, .ODT, .ODS, .ODP and others. Programs reading or
 writing ZIP files SHOULD rely on internal record signatures described
 in this document to identify files in this format.

 4.1.2 ZIP files SHOULD contain at least one file and MAY contain
 multiple files.

 4.1.3 Data compression MAY be used to reduce the size of files
 placed into a ZIP file, but is not required. This format supports the
 use of multiple data compression algorithms. When compression is used,
 one of the documented compression algorithms MUST be used. Implementors
 are advised to experiment with their data to determine which of the
 available algorithms provides the best compression for their needs.
 Compression method 8 (Deflate) is the method used by default by most
 ZIP compatible application programs.

 4.1.4 Data encryption MAY be used to protect files within a ZIP file.
 Keying methods supported for encryption within this format include
 passwords and public/private keys. Either MAY be used individually
 or in combination. Encryption MAY be applied to individual files.
 Additional security MAY be used through the encryption of ZIP file
 metadata stored within the Central Directory. See the section on the
 Strong Encryption Specification for information. Refer to the section
 in this document entitled "Incorporating PKWARE Proprietary Technology
 into Your Product" for more information.

 4.1.5 Data integrity MUST be provided for each file using CRC32.

 4.1.6 Additional data integrity MAY be included through the use of
 digital signatures. Individual files MAY be signed with one or more
 digital signatures. The Central Directory, if signed, MUST use a
 single signature.

 4.1.7 Files MAY be placed within a ZIP file uncompressed or stored.
 The term "stored" as used in the context of this document means the file
 is copied into the ZIP file uncompressed.

 4.1.8 Each data file placed into a ZIP file MAY be compressed, stored,
 encrypted or digitally signed independent of how other data files in the
 same ZIP file are archived.

 4.1.9 ZIP files MAY be streamed, split into segments (on fixed or on
 removable media) or "self-extracting". Self-extracting ZIP
 files MUST include extraction code for a target platform within
 the ZIP file.

 4.1.10 Extensibility is provided for platform or application specific
 needs through extra data fields that MAY be defined for custom
 purposes. Extra data definitions MUST NOT conflict with existing
 documented record definitions.

 4.1.11 Common uses for ZIP MAY also include the use of manifest files.
 Manifest files store application specific information within a file stored
 within the ZIP file. This manifest file SHOULD be the first file in the
 ZIP file. This specification does not provide any information or guidance on
 the use of manifest files within ZIP files. Refer to the application developer
 for information on using manifest files and for any additional profile
 information on using ZIP within an application.

 4.1.12 ZIP files MAY be placed within other ZIP files.

4.2 ZIP Metadata

 4.2.1 ZIP files are identified by metadata consisting of defined record types
 containing the storage information necessary for maintaining the files
 placed into a ZIP file. Each record type MUST be identified using a header
 signature that identifies the record type. Signature values begin with the
 two byte constant marker of 0x4b50, representing the characters "PK".

4.3 General Format of a .ZIP file

 4.3.1 A ZIP file MUST contain an "end of central directory record". A ZIP
 file containing only an "end of central directory record" is considered an
 empty ZIP file. Files may be added or replaced within a ZIP file, or deleted.
 A ZIP file MUST have only one "end of central directory record". Other
 records defined in this specification MAY be used as needed to support
 storage requirements for individual ZIP files.

 4.3.2 Each file placed into a ZIP file MUST be preceeded by a "local
 file header" record for that file. Each "local file header" MUST be
 accompanied by a corresponding "central directory header" record within
 the central directory section of the ZIP file.

 4.3.3 Files MAY be stored in arbitrary order. Large . within a ZIP files canfile. A ZIP
 file MAY span multiple
 diskette media volumes or it MAY be split into user-defined
 segment sizes.

 All values MUST be stored in little-endian byte order unless
 otherwise specified in this document for a specific data element.

 4.3.4 Compression MUST NOT be applied to a "local file header", an "encryption
 header", or an "end of central directory record". Individual "central
 directory records" must not be compressed, but the aggregate of all central
 directory records MAY be compressed.

 4.3.5 File data MAY be followed by a "data descriptor" for the file. Data
 descriptors are used to facilitate ZIP file streaming.

 4.3.6 Overall .ZIP file format:

 [local file header 1]
 [file data 1]
 [data descriptor [encryption header 1]
 .
 .
 .
 [file data 1]
 [data descriptor 1]
 .
 .
 .
 [local file header n]
 [file data [encryption header n]
 [[file data descriptor n]
 [data descriptor n]
 [archive decryption header] (EFS)

 [archive extra data record] (EFS)

 [central directory]
 header 1]
 .
 .
 .
 [central directory header n]
 [zip64 end of central directory record]
 [zip64 end of central directory locator]
 [end of central directory record]

 A. 4.3.7 Local file header:

 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes

 file name (variable size)
 extra field (variable size)

 B. 4.3.8 File data

 Immediately following the local header for a file
 isSHOULD be placed the compressed or stored data for the file.

 If the file is encrypted, the encryption header for the file
 SHOULD be placed after the local header and before the file
 data. The series of [local file header][encryption header]
 [file data][data
][data descriptor] repeats for each file in the
 .ZIP archive.

 C. Zero-byte files, directories, and other file types that
 contain no content MUST not include file data.

 4.3.9 Data descriptor:

 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes

 4.3.9.1 This descriptor exists onlyMUST exist if bit 3 of the general
 purpose bit flag is set (see below). It is byte aligned
 and immediately follows the last byte of compressed data.
 This descriptor isSHOULD be used only when it was not possible to
 seek in the output .ZIP file, e.g., when the output .ZIP file
 was standard output or a non -seekable device. For Zip64ZIP64(tm) format
 archives, the compressed and uncompressed sizes are 8 bytes each.

 D. 4.3.9.2 When compressing files, compressed and uncompressed sizes
 should be stored in ZIP64 format (as 8 byte values) when a
 file's size exceeds 0xFFFFFFFF. However ZIP64 format may be
 used regardless of the size of a file. When extracting, if
 the zip64 extended information extra field is present for
 the file the compressed and uncompressed sizes will be 8
 byte values.

 4.3.9.3 Although not originally assigned a signature, the value
 0x08074b50 has commonly been adopted as a signature value
 for the data descriptor record. Implementers should be
 aware that ZIP files may be encountered with or without this
 signature marking data descriptors and SHOULD account for
 either case when reading ZIP files to ensure compatibility.

 4.3.9.4 When writing ZIP files, implementors SHOULD include the
 signature value marking the data descriptor record. When
 the signature is used, the fields currently defined for
 the data descriptor record will immediately follow the
 signature.

 4.3.9.5 An extensible data descriptor will be released in a
 future version of this APPNOTE. This new record is intended to
 resolve conflicts with the use of this record going forward,
 and to provide better support for streamed file processing.

 4.3.9.6 When the Central Directory Encryption method is used,
 the data descriptor record is not required, but MAY be used.
 If present, and bit 3 of the general purpose bit field is set to
 indicate its presence, the values in fields of the data descriptor
 record MUST be set to binary zeros. See the section on the Strong
 Encryption Specification for information. Refer to the section in
 this document entitled "Incorporating PKWARE Proprietary Technology
 into Your Product" for more information.

 4.3.10 Archive decryption header: (EFS)

 4.3.10.1 The Archive Decryption Header is introduced in version 6.2
 of the ZIP format specification. This record exists in support
 of the Central Directory Encryption Feature implemented as part of
 the Strong Encryption Specification as described in this document.
 When the Central Directory Structure is encrypted, this decryption
 header willMUST precede the encrypted data segment.

 4.3.10.2 The encrypted
 data segment willSHALL consist of the Archive
 extra data record (if
 present) and the encrypted Central Directory
 Structure data.
 The format of this data record is identical to the
 Decryption
 header record preceding compressed file data. If the
 central
 directory structure is encrypted, the location of the start of
 this data record is determined using the Start of Central Directory
 field in the Zip64 End of Central Directory record. Refer toSee the
 section on the Strong Encryption Specification for information
 on the fields used in the Archive Decryption Header record.

 E. Refer to the section in this document entitled "Incorporating
 PKWARE Proprietary Technology into Your Product" for more information.

 4.3.11 Archive extra data record: (EFS)

 archive extra data signature 4 bytes (0x08064b50)
 extra field length 4 bytes
 extra field data (variable size)

 4.3.11.1 The Archive Extra Data Record is introduced in version 6.2
 of the ZIP format specification. This record existsMAY be used in support
 of the Central Directory Encryption Feature implemented as part of
 the Strong Encryption Specification as described in this document.
 When present, this record MUST immediately precedesprecede the central
 directory data structure.

 4.3.11.2 The size of this data record willSHALL be
 included in the
 Size of the Central Directory field in the
 End of Central
 Directory record. If the central directory structure
 is compressed,
 but not encrypted, the location of the start of
 this data record is
 determined using the Start of Central Directory
 field in the Zip64
 End of Central Directory record.

 F.Refer to the section in this document
 entitled "Incorporating PKWARE Proprietary Technology into Your
 Product" for more information.

 4.3.12 Central directory structure:

 [filecentral directory header 1]
 .
 .
 .
 [filecentral directory header n]
 [digital signature]

 File header:

 central file header signature 4 bytes (0x02014b50)
 version made by 2 bytes
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes
 file comment length 2 bytes
 disk number start 2 bytes
 internal file attributes 2 bytes
 external file attributes 4 bytes
 relative offset of local header 4 bytes

 file name (variable size)
 extra field (variable size)
 file comment (variable size)

 4.3.13 Digital signature:

 header signature 4 bytes (0x05054b50)
 size of data 2 bytes
 signature data (variable size)

 With the introduction of the Central Directory Encryption
 feature in version 6.2 of this specification, the Central
 Directory Structure mayMAY be stored both compressed and encrypted.
 Although not required, it is assumed when encrypting the
 Central Directory Structure, that it will be compressed
 for greater storage efficiency. Information on the
 Central Directory Encryption feature can be found in the section
 describing the Strong Encryption Specification. The Digital
 Signature record will be neither compressed nor encrypted.

 G. 4.3.14 Zip64 end of central directory record

 zip64 end of central dir
 signature 4 bytes (0x06064b50)
 size of zip64 end of central
 directory record 8 bytes
 version made by 2 bytes
 version needed to extract 2 bytes
 number of this disk 4 bytes
 number of the disk with the
 start of the central directory 4 bytes
 total number of entries in the
 central directory on this disk 8 bytes
 total number of entries in the
 central directory 8 bytes
 size of the central directory 8 bytes
 offset of start of central
 directory with respect to
 the starting disk number 8 bytes
 zip64 extensible data sector (variable size)

 4.3.14.1 The value stored into the "size of zip64 end of central
 directory record" should be the size of the remaining
 record and should not include the leading 12 bytes.

 Size = SizeOfFixedFields + SizeOfVariableData - 12.

 4.3.14.2 The above record structure defines Version 1 of the
 Zip64zip64 end of central directory record. Version 1 was
 implemented in versions of this specification preceding
 6.2 in support of the ZIP64(tm) large file feature. The
 introduction of the Central Directory Encryption feature
 implemented in version 6.2 as part of the Strong Encryption
 Specification defines Version 2 of this record structure.
 Refer to the section describing the Strong Encryption
 Specification for details on the version 2 format for
 this record.

 H. Refer to the section in this document entitled
 "Incorporating PKWARE Proprietary Technology into Your Product"
 for more information applicable to use of Version 2 of this
 record.

 4.3.14.3 Special purpose data MAY reside in the zip64 extensible
 data sector field following either a V1 or V2 version of this
 record. To ensure identification of this special purpose data
 it must include an identifying header block consisting of the
 following:

 Header ID - 2 bytes
 Data Size - 4 bytes

 The Header ID field indicates the type of data that is in the
 data block that follows.

 Data Size identifies the number of bytes that follow for this
 data block type.

 4.3.14.4 Multiple special purpose data blocks MAY be present.
 Each MUST be preceded by a Header ID and Data Size field. Current
 mappings of Header ID values supported in this field are as
 defined in APPENDIX C.

 4.3.15 Zip64 end of central directory locator

 zip64 end of central dir locator
 signature 4 bytes (0x07064b50)
 number of the disk with the
 start of the zip64 end of
 central directory 4 bytes
 relative offset of the zip64
 end of central directory record 8 bytes
 total number of disks 4 bytes

 I. 4.3.16 End of central directory record:

 end of central dir signature 4 bytes (0x06054b50)
 number of this disk 2 bytes
 number of the disk with the
 start of the central directory 2 bytes
 total number of entries in the
 central directory on this disk 2 bytes
 total number of entries in
 the central directory 2 bytes
 size of the central directory 4 bytes
 offset of start of central
 directory with respect to
 the starting disk number 4 bytes
 .ZIP file comment length 2 bytes
 .ZIP file comment (variable size)

 J.
4.4 Explanation of fields

 4.4.1 General notes on fields

 4.4.1.1 All fields unless otherwise noted are unsigned and stored
 in Intel low-byte:high-byte, low-word:high-word order.

 4.4.1.2 String fields are not null terminated, since the length
 is given explicitly.

 4.4.1.3 The entries in the central directory may not necessarily
 be in the same order that files appear in the .ZIP file.

 :

 4.4.1.4 If one of the fields in the end of central directory
 record is too small to hold required data, the field should be
 set to -1 (0xFFFF or 0xFFFFFFFF) and the ZIP64 format record
 should be created.

 4.4.1.5 The end of central directory record and the Zip64 end
 of central directory locator record MUST reside on the same
 disk when splitting or spanning an archive.

 4.4.2 version made by (2 bytes)

 4.4.2.1 The upper byte indicates the compatibility of the file
 attribute information. If the external file attributes
 are compatible with MS-DOS and can be read by PKZIP for
 DOS version 2.04g then this value will be zero. If these
 attributes are not compatible, then this value will
 identify the host system on which the attributes are
 compatible. Software can use this information to determine
 the line record format for text files etc.

 4.4.2.2 The current
 mappings are:

 0 - MS-DOS and OS/2 (FAT / VFAT / FAT32 file systems)
 1 - Amiga 2 - OpenVMS
 3 - UnixUNIX 4 - VM/CMS
 5 - Atari ST 6 - OS/2 H.P.F.S.
 7 - Macintosh 8 - Z-System
 9 - CP/M 10 - Windows NTFS
 11 - MVS (OS/390 - Z/OS) 12 - VSE
 13 - Acorn Risc 14 - VFAT
 15 - alternate MVS 16 - BeOS
 17 - Tandem 18 - OS/400
 19 - OS/ X (Darwin) 20 thru 255 - unused

 4.4.2.3 The lower byte indicates the ZIP specification version
 (the version of this document) supported by the software
 used to encode the file. The value/10 indicates the major
 version number, and the value mod 10 is the minor version
 number.

 4.4.3 version needed to extract (2 bytes)

 4.4.3.1 The minimum supported ZIP specification version needed
 to
 extract the file, mapped as above. This value is based on
 the specific format features a ZIP program mustMUST support to
 be able to extract the file. If multiple features are
 applied to a file, the minimum version shouldMUST be set to the
 feature having the highest value. New features or feature
 changes affecting the published format specification will be
 implemented using higher version numbers than the last
 published value to avoid conflict.

 4.4.3.2 Current minimum feature versions are as defined below:

 1.0 - Default value
 1.1 - File is a volume label
 2.0 - File is a folder (directory)
 2.0 - File is compressed using Deflate compression
 2.0 - File is encrypted using traditional PKWARE encryption
 2.1 - File is compressed using Deflate64(tm)
 2.5 - File is compressed using PKWARE DCL Implode
 2.7 - File is a patch data set
 4.5 - File uses ZIP64 format extensions
 4.6 - File is compressed using BZIP2 compression*
 5.0 - File is encrypted using DES
 5.0 - File is encrypted using 3DES
 5.0 - File is encrypted using original RC2 encryption
 5.0 - File is encrypted using RC4 encryption
 5.1 - File is encrypted using AES encryption
 5.1 - File is encrypted using corrected RC2 encryption**
 5.2 - File is encrypted using corrected RC2-64 encryption**
 6.1 - File is encrypted using non-OAEP key wrapping***
 6.2 - Central directory encryption

 6.3 - File is compressed using LZMA
 6.3 - File is compressed using PPMd+
 6.3 - File is encrypted using Blowfish
 6.3 - File is encrypted using Twofish

 4.4.3.3 Notes on version needed to extract

 * Early 7.x (pre-7.2) versions of PKZIP incorrectly set the
 version needed to extract for BZIP2 compression to be 50
 when it should have been 46.

 ** Refer to the section on Strong Encryption Specification
 for additional information regarding RC2 corrections.

 *** Certificate encryption using non-OAEP key wrapping is the
 intended mode of operation for all versions beginning with 6.1.
 Support for OAEP key wrapping shouldMUST only be used for
 backward compatibility when sending ZIP files to be opened by
 versions of PKZIP older than 6.1 (5.0 or 6.0).

 + Files compressed using PPMd MUST set the version
 needed to extract field to 6.3, however, not all ZIP
 programs enforce this and may be unable to decompress
 data files compressed using PPMd if this value is set.

 When using ZIP64 extensions, the corresponding value in the
 Zip64zip64 end of central directory record shouldMUST also be set.
 This field currently supports only the value 45should be set appropriately to indicate
 ZIP64 extensions are present.

 whether
 Version 1 or Version 2 format is in use.

 4.4.4 general purpose bit flag: (2 bytes)

 Bit 0: If set, indicates that the file is encrypted.

 (For Method 6 - Imploding)
 Bit 1: If the compression method used was type 6,
 Imploding, then this bit, if set, indicates
 an 8K sliding dictionary was used. If clear,
 then a 4K sliding dictionary was used.

 Bit 2: If the compression method used was type 6,
 Imploding, then this bit, if set, indicates
 3 Shannon-Fano trees were used to encode the
 sliding dictionary output. If clear, then 2
 Shannon-Fano trees were used.

 (For Methods 8 and 9 - Deflating)
 Bit 2 Bit 1
 0 0 Normal (-en) compression option was used.
 0 1 Maximum (-exx/-ex) compression option was used.
 1 0 Fast (-ef) compression option was used.
 1 1 Super Fast (-es) compression option was used.

 (For Method 14 - LZMA)
 Bit 1: If the compression method used was type 14,
 LZMA, then this bit, if set, indicates
 an end-of-stream (EOS) marker is used to
 mark the end of the compressed data stream.
 If clear, then an EOS marker is not present
 and the compressed data size must be known
 to extract.

 Note: Bits 1 and 2 are undefined if the compression
 method is any other.

 Bit 3: If this bit is set, the fields crc-32, compressed
 size and uncompressed size are set to zero in the
 local header. The correct values are put in the
 data descriptor immediately following the compressed
 data. (Note: PKZIP version 2.04g for DOS only
 recognizes this bit for method 8 compression, newer
 versions of PKZIP recognize this bit for any
 compression method.)

 Bit 4: Reserved for use with method 8, for enhanced
 deflating.

 Bit 5: If this bit is set, this indicates that the file is
 compressed patched data. (Note: Requires PKZIP
 version 2.70 or greater)

 Bit 6: Strong encryption. If this bit is set, you should
 MUST
 set the version needed to extract value to at least
 50 and you mustMUST also set bit 0. If AES encryption
 is used, the version needed to extract value must
 MUST
 be at least 51.

 See the section describing the Strong
 Encryption Specification for details. Refer to the
 section in this document entitled "Incorporating PKWARE
 Proprietary Technology into Your Product" for more
 information.

 Bit 7: Currently unused.

 Bit 8: Currently unused.

 Bit 9: Currently unused.

 Bit 10: Currently unused.

 Bit 11: Currently unused.

 Language encoding flag (EFS). If this bit is set,
 the filename and comment fields for this file
 MUST be encoded using UTF-8. (see APPENDIX D)

 Bit 12: Reserved by PKWARE for enhanced compression.

 Bit 13: UsedSet when encrypting the Central Directory to indicate
 selected data values in the Local Header are masked to
 hide their actual values. See the section describing
 the Strong Encryption Specification for details.

 Refer
 to the section in this document entitled "Incorporating
 PKWARE Proprietary Technology into Your Product" for
 more information.

 Bit 14: Reserved by PKWARE.

 Bit 15: Reserved by PKWARE.

 4.4.5 compression method: (2 bytes)

 (see accompanying documentation for algorithm
 descriptions)

 0 - The file is stored (no compression)
 1 - The file is Shrunk
 2 - The file is Reduced with compression factor 1
 3 - The file is Reduced with compression factor 2
 4 - The file is Reduced with compression factor 3
 5 - The file is Reduced with compression factor 4
 6 - The file is Imploded
 7 - Reserved for Tokenizing compression algorithm
 8 - The file is Deflated
 9 - Enhanced Deflating using Deflate64(tm)
 10 - PKWARE Data Compression Library Imploding
 (old IBM TERSE)
 11 - Reserved by PKWARE
 12 - File is compressed using BZIP2 algorithm

 13 - Reserved by PKWARE
 14 - LZMA (EFS)
 15 - Reserved by PKWARE
 16 - Reserved by PKWARE
 17 - Reserved by PKWARE
 18 - File is compressed using IBM TERSE (new)
 19 - IBM LZ77 z Architecture (PFS)
 97 - WavPack compressed data
 98 - PPMd version I, Rev 1

 4.4.6 date and time fields: (2 bytes each)

 The date and time are encoded in standard MS-DOS format.
 If input came from standard input, the date and time are
 those at which compression was started for this data.
 If encrypting the central directory and general purpose bit
 flag 13 is set indicating masking, the value stored in the
 Local Header will be zero.

 4.4.7 CRC-32: (4 bytes)

 The CRC-32 algorithm was generously contributed by
 David Schwaderer and can be found in his excellent
 book "C Programmers Guide to NetBIOS" published by
 Howard W. Sams & Co. Inc. The 'magic number' for
 the CRC is 0xdebb20e3. The proper CRC pre and post
 conditioning is used, meaning that the CRC register
 is pre-conditioned with all ones (a starting value
 of 0xffffffff) and the value is post-conditioned by
 taking the one's complement of the CRC residual.
 If bit 3 of the general purpose flag is set, this
 field is set to zero in the local header and the correct
 value is put in the data descriptor and in the central
 directory. IfWhen encrypting the central directory and , if the
 local header is not in ZIP64 format and general
 purpose
 bit flag 13 is set indicating masking, the value
 stored
 in the Local Header will be zero.

 4.4.8 compressed size: (4 bytes)
 4.4.9 uncompressed size: (4 bytes)

 The size of the file compressed (4.4.8) and uncompressed,
 (4.4.9) respectively. When a decryption header is present it
 will be placed in front of the file data and the value of the
 compressed file size will include the bytes of the decryption
 header. If bit 3 of the general purpose bit flag
 is set,
 these fields are set to zero in the local header
 and the
 correct values are put in the data descriptor and
 in the central directory. If an archive is in zip64ZIP64 format
 and the value in this field is 0xFFFFFFFF, the size will be
 in the corresponding 8 byte zip64ZIP64 extended information
 extra field. IfWhen encrypting the central directory, if the
 local header is not in ZIP64 format and general
 purpose bit
 flag 13 is set indicating masking, the value stored
 for the
 uncompressed size in the Local Header will be zero.

 4.4.10 file name length: (2 bytes)
 4.4.11 extra field length: (2 bytes)
 4.4.12 file comment length: (2 bytes)

 The length of the file name, extra field, and comment
 fields respectively. The combined length of any
 directory record and these three fields should not
 generally exceed 65,535 bytes. If input came from standard
 input, the file name length is set to zero.

 4.4.13 disk number start: (2 bytes)

 The number of the disk on which this file begins. If an
 archive is in zip64ZIP64 format and the value in this field is
 0xFFFF, the size will be in the corresponding 4 byte zip64
 extended information extra field.

 4.4.14 internal file attributes: (2 bytes)

 Bits 1 and 2 are reserved for use by PKWARE.

 4.4.14.1 The lowest bit of this field indicates, if set,
 that
 the file is apparently an ASCII or text file. If not
 set, that the file apparently contains binary data.
 The remaining bits are unused in version 1.0.

 4.4.14.2 The 0x0002 bit of this field indicates, if set, that
 a
 4 byte variable record length control field precedes each
 logical record indicating the length of the record. The
 record length control field is stored in little-endian byte
 order. This
 flag is independent of text control characters,
 and if used
 in conjunction with text data, includes any
 control
 characters in the total length of the record. This
 value is
 provided for mainframe data transfer support.

 4.4.15 external file attributes: (4 bytes)

 The mapping of the external attributes is
 host-system dependent (see 'version made by'). For
 MS-DOS, the low order byte is the MS-DOS directory
 attribute byte. If input came from standard input, this
 field is set to zero.

 4.4.16 relative offset of local header: (4 bytes)

 This is the offset from the start of the first disk on
 which this file appears, to where the local header should
 be found. If an archive is in zip64ZIP64 format and the value
 in this field is 0xFFFFFFFF, the size will be in the
 corresponding 8 byte zip64 extended information extra field.

 4.4.17 file name: (Variable)

 4.4.17.1 The name of the file, with optional relative path.
 The path stored shouldMUST not contain a drive or
 device letter, or a leading slash. All slashes
 shouldMUST be forward slashes '/' as opposed to
 backwards slashes '\' for compatibility with Amiga
 and UnixUNIX file systems etc. If input came from standard
 input, there is no file name field.

 4.4.17.2 If encrypting
 using the central directoryCentral Directory Encryption Feature and
 general purpose bit flag 13 is set
 indicating masking, the file
 name stored in the Local Header
 will not be the actual file name.
 A masking value consisting
 of a unique hexadecimal value will
 be stored. This value will
 be sequentially incremented for each
 file in the archive. See
 the section on the Strong Encryption
 Specification for details
 on retrieving the encrypted file name.
 Refer to the section in this document entitled "Incorporating PKWARE
 Proprietary Technology into Your Product" for more information.

 4.4.18 file comment: (Variable)

 The comment for this file.

 4.4.19 number of this disk: (2 bytes)

 The number of this disk, which contains central
 directory end record. If an archive is in ZIP64 format
 and the value in this field is 0xFFFF, the size will
 be in the corresponding 4 byte zip64 end of central
 directory field.

 4.4.20 number of the disk with the start of the central
 directory: (2 bytes)

 The number of the disk on which the central
 directory starts. If an archive is in ZIP64 format
 and the value in this field is 0xFFFF, the size will
 be in the corresponding 4 byte zip64 end of central
 directory field.

 4.4.21 total number of entries in the central dir on
 this disk: (2 bytes)

 The number of central directory entries on this disk.
 If an archive is in ZIP64 format and the value in
 this field is 0xFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 4.4.22 total number of entries in the central dir: (2 bytes)

 The total number of files in the .ZIP file. If an
 archive is in ZIP64 format and the value in this field
 is 0xFFFF, the size will be in the corresponding 8 byte
 zip64 end of central directory field.

 4.4.23 size of the central directory: (4 bytes)

 The size (in bytes) of the entire central directory.
 If an archive is in ZIP64 format and the value in
 this field is 0xFFFFFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 4.4.24 offset of start of central directory with respect to
 the starting disk number: (4 bytes)

 Offset of the start of the central directory on the
 disk on which the central directory starts. If an
 archive is in ZIP64 format and the value in this
 field is 0xFFFFFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 4.4.25 .ZIP file comment length: (2 bytes)

 The length of the comment for this .ZIP file.

 4.4.26 .ZIP file comment: (Variable)

 The comment for this .ZIP file. ZIP file comment data
 is stored unsecured. No encryption or data authentication
 is applied to this area at this time. Confidential information
 should not be stored in this section.

 4.4.27 zip64 extensible data sector (variable size)

 (currently reserved for use by PKWARE)

 4.4.28 extra field: (Variable)

 This isSHOULD be used for storage expansion. If additional
 information
 needs to be stored within a ZIP file for special
 application or platform needs or for specific
 platforms, it shouldSHOULD be stored here. Earlier
 Programs supporting earlier versions
 of the softwarethis specification can
 then safely skip thisthe file, and
 find the next file or header.
 This field will be 0
 length in version 1.0.

 Existing extra fields are defined in the section
 Extensible data fields that follows.

4.5 Extensible data fields

 4.5.1 In order to allow different programs and different types
 of information to be stored in the 'extra' field in .ZIP
 files, the following structure shouldMUST be used for all
 programs storing data in this field:

 header1+data1 + header2+data2 . . .

 Each header should consist of:

 Header ID - 2 bytes
 Data Size - 2 bytes

 Note: all fields stored in Intel low-byte/high-byte order.

 The Header ID field indicates the type of data that is in
 the following data block.

 Header ID'sIDs of 0 thru 31 are reserved for use by PKWARE.
 The remaining ID'sIDs can be used by third party vendors for
 proprietary usage.

 4.5.2 The current Header ID mappings defined by PKWARE are:

 0x0001 ZIP64Zip64 extended information extra field
 0x0007 AV Info
 0x0008 Reserved for future Unicode file nameextended language encoding data (PFS)
 (see APPENDIX D)
 0x0009 OS/2
 0x000a NTFS
 0x000c OpenVMS
 0x000d Unix
 UNIX
 0x000e Reserved for file stream and fork descriptors
 0x000f Patch Descriptor
 0x0014 PKCS#7 Store for X.509 Certificates
 0x0015 X.509 Certificate ID and Signature for
 individual file
 0x0016 X.509 Certificate ID for Central Directory
 0x0017 Strong Encryption Header
 0x0018 Record Management Controls
 0x0019 PKCS#7 Encryption Recipient Certificate List
 0x0065 IBM S/390 (Z390), AS/400 (I400) attributes
 - uncompressed
 0x0066 Reserved for IBM S/390 (Z390), AS/400 (I400)
 attributes - compressed
 0x4690 POSZIP 4690 (reserved)

 4.5.3 -Zip64 Extended Information Extra Field (0x0001):

 The following is the layout of the zip64 extended
 information "extra" block. If one of the size or
 offset fields in the Local or Central directory
 record is too small to hold the required data,
 a Zip64 extended information record is created.
 The order of the fields in the zip64 extended
 information record is fixed, but the fields MUST
 only appear if the corresponding Local or Central
 directory record field is set to 0xFFFF or 0xFFFFFFFF.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(ZIP64) 0x0001 2 bytes Tag for this "extra" block type
 Size 2 bytes Size of this "extra" block
 Original
 Size 8 bytes Original uncompressed file size
 Compressed
 Size 8 bytes Size of compressed data
 Relative Header
 Offset 8 bytes Offset of local header record
 Disk Start
 Number 4 bytes Number of the disk on which
 this file starts

 This entry in the Local header MUST include BOTH original
 and compressed file size fields. If encrypting the
 central directory and bit 13 of the general purpose bit
 flag is set indicating masking, the value stored in the
 Local Header for the original file size will be zero.

 4.5.4 -OS/2 Extra Field (0x0009):

 The following is the layout of the OS/2 attributes "extra"
 block. (Last Revision 09/05/95)

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(OS/2) 0x0009 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 BSize 4 bytes Uncompressed Block Size
 CType 2 bytes Compression type
 EACRC 4 bytes CRC value for uncompress block
 (var) variable Compressed block

 The OS/2 extended attribute structure (FEA2LIST) is
 compressed and then stored in its entirety within this
 structure. There will only ever be one "block" of data in
 VarFields[].

 4.5.5 -NTFS Extra Field (0x000a):

 The following is the layout of the NTFS attributes
 "extra" block. (Note: At this time the Mtime, Atime
 and Ctime values MAY be used on any WIN32 system.)

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(NTFS) 0x000a 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 Reserved 4 bytes Reserved for future use
 Tag1 2 bytes NTFS attribute tag value #1
 Size1 2 bytes Size of attribute #1, in bytes
 (var) Size1 Attribute #1 data
 .
 .
 .
 TagN 2 bytes NTFS attribute tag value #N
 SizeN 2 bytes Size of attribute #N, in bytes
 (var) SizeN Attribute #N data

 For NTFS, values for Tag1 through TagN are as follows:
 (currently only one set of attributes is defined for NTFS)

 Tag Size Description
 ----- ---- -----------
 0x0001 2 bytes Tag for attribute #1
 Size1 2 bytes Size of attribute #1, in bytes
 Mtime 8 bytes File last modification time
 Atime 8 bytes File last access time
 Ctime 8 bytes File creation time

 4.5.6 -OpenVMS Extra Field (0x000c):

 The following is the layout of the OpenVMS attributes
 "extra" block.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (VMS) 0x000c 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 CRC 4 bytes 32-bit CRC for remainder of the block
 Tag1 2 bytes OpenVMS attribute tag value #1
 Size1 2 bytes Size of attribute #1, in bytes
 (var) Size1 Attribute #1 data
 .
 .
 .
 TagN 2 bytes OpenVMS attribute tag value #N
 SizeN 2 bytes Size of attribute #N, in bytes
 (var) SizeN Attribute #N data

 OpenVMS Extra Field Rules:

 4.5.6.1. There will be one or more attributes present, which
 will each be preceded by the above TagX & SizeX values.
 These values are identical to the ATR$C_XXXX and ATR$S_XXXX
 constants which are defined in ATR.H under OpenVMS C. Neither
 of these values will ever be zero.

 4.5.6.2. No word alignment or padding is performed.

 4.5.6.3. A well-behaved PKZIP/OpenVMS program should never produce
 more than one sub-block with the same TagX value. Also, there will
 never be more than one "extra" block of type 0x000c in a particular
 directory record.

 4.5.7 -UNIX Extra Field (0x000d):

 The following is the layout of the UNIX "extra" block.
 Note: all fields are stored in Intel low-byte/high-byte
 order.

 Value Size Description
 ----- ---- -----------
(UNIX) 0x000d 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 Atime 4 bytes File last access time
 Mtime 4 bytes File last modification time
 Uid 2 bytes File user ID
 Gid 2 bytes File group ID
 (var) variable Variable length data field

 The variable length data field will contain file type
 specific data. Currently the only values allowed are
 the original "linked to" file names for hard or symbolic
 links, and the major and minor device node numbers for
 character and block device nodes. Since device nodes
 cannot be either symbolic or hard links, only one set of
 variable length data is stored. Link files will have the
 name of the original file stored. This name is NOT NULL
 terminated. Its size can be determined by checking TSize -
 12. Device entries will have eight bytes stored as two 4
 byte entries (in little endian format). The first entry
 will be the major device number, and the second the minor
 device number.

 4.5.8 -PATCH Descriptor Extra Field (0x000f):

 4.5.8.1 The following is the layout of the Patch Descriptor
 "extra" block.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(Patch) 0x000f 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 Version 2 bytes Version of the descriptor
 Flags 4 bytes Actions and reactions (see below)
 OldSize 4 bytes Size of the file about to be patched
 OldCRC 4 bytes 32-bit CRC of the file to be patched
 NewSize 4 bytes Size of the resulting file
 NewCRC 4 bytes 32-bit CRC of the resulting file

 4.5.8.2 Actions and reactions

 Bits Description
 ---- ----------------
 0 Use for auto detection
 1 Treat as a self-patch
 2-3 RESERVED
 4-5 Action (see below)
 6-7 RESERVED
 8-9 Reaction (see below) to absent file
 10-11 Reaction (see below) to newer file
 12-13 Reaction (see below) to unknown file
 14-15 RESERVED
 16-31 RESERVED

 4.5.8.2.1 Actions

 Action Value
 ------ -----
 none 0
 add 1
 delete 2
 patch 3

 4.5.8.2.2 Reactions

 Reaction Value
 -------- -----
 ask 0
 skip 1
 ignore 2
 fail 3

 4.5.8.3 Patch support is provided by PKPatchMaker(tm) technology
 and is covered under U.S. Patents and Patents Pending. The use or
 implementation in a product of certain technological aspects set
 forth in the current APPNOTE, including those with regard to
 strong encryption or patching requires a license from PKWARE.
 Refer to the section in this document entitled "Incorporating
 PKWARE Proprietary Technology into Your Product" for more
 information.

 4.5.9 -PKCS#7 Store for X.509 Certificates (0x0014):

 This field MUST contain information about each of the certificates
 files may be signed with. When the Central Directory Encryption
 feature is enabled for a ZIP file, this record will appear in
 the Archive Extra Data Record, otherwise it will appear in the
 first central directory record and will be ignored in any
 other record.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(Store) 0x0014 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the store data
 TData TSize Data about the store

 4.5.10 -X.509 Certificate ID and Signature for individual file (0x0015):

 This field contains the information about which certificate in
 the PKCS#7 store was used to sign a particular file. It also
 contains the signature data. This field can appear multiple
 times, but can only appear once per certificate.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(CID) 0x0015 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 TData TSize Signature Data

 4.5.11 -X.509 Certificate ID and Signature for central directory (0x0016):

 This field contains the information about which certificate in
 the PKCS#7 store was used to sign the central directory structure.
 When the Central Directory Encryption feature is enabled for a
 ZIP file, this record will appear in the Archive Extra Data Record,
 otherwise it will appear in the first central directory record.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(CDID) 0x0016 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 TData TSize Data

 4.5.12 -Strong Encryption Header (0x0017):

 Value Size Description
 ----- ---- -----------
 0x0017 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 Format 2 bytes Format definition for this record
 AlgID 2 bytes Encryption algorithm identifier
 Bitlen 2 bytes Bit length of encryption key
 Flags 2 bytes Processing flags
 CertData TSize-8 Certificate decryption extra field data
 (refer to the explanation for CertData
 in the section describing the
 Certificate Processing Method under
 the Strong Encryption Specification)

 See the section describing the Strong Encryption Specification
 for details. Refer to the section in this document entitled
 "Incorporating PKWARE Proprietary Technology into Your Product"
 for more information.

 4.5.13 -Record Management Controls (0x0018):

 Value Size Description
 ----- ---- -----------
(Rec-CTL) 0x0018 2 bytes Tag for this "extra" block type
 CSize 2 bytes Size of total extra block data
 Tag1 2 bytes Record control attribute 1
 Size1 2 bytes Size of attribute 1, in bytes
 Data1 Size1 Attribute 1 data
 .
 .
 .
 TagN 2 bytes Record control attribute N
 SizeN 2 bytes Size of attribute N, in bytes
 DataN SizeN Attribute N data

 4.5.14 -PKCS#7 Encryption Recipient Certificate List (0x0019):

 This field MAY contain information about each of the certificates
 used in encryption processing and it can be used to identify who is
 allowed to decrypt encrypted files. This field should only appear
 in the archive extra data record. This field is not required and
 serves only to aid archive modifications by preserving public
 encryption key data. Individual security requirements may dictate
 that this data be omitted to deter information exposure.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
(CStore) 0x0019 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the store data
 TData TSize Data about the store

 TData:

 Value Size Description
 ----- ---- -----------
 Version 2 bytes Format version number - must 0x0001 at this time
 CStore (var) PKCS#7 data blob

 See the section describing the Strong Encryption Specification
 for details. Refer to the section in this document entitled
 "Incorporating PKWARE Proprietary Technology into Your Product"
 for more information.

 4.5.15 -MVS Extra Field (0x0065):

 The following is the layout of the MVS "extra" block.
 Note: Some fields are stored in Big Endian format.
 All text is in EBCDIC format unless otherwise specified.

 Value Size Description
 ----- ---- -----------
(MVS) 0x0065 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 ID 4 bytes EBCDIC "Z390" 0xE9F3F9F0 or
 "T4MV" for TargetFour
 (var) TSize-4 Attribute data (see APPENDIX B)

 4.5.16 -OS/400 Extra Field (0x0065):

 The following is the layout of the OS/400 "extra" block.
 Note: Some fields are stored in Big Endian format.
 All text is in EBCDIC format unless otherwise specified.

 Value Size Description
 ----- ---- -----------
(OS400) 0x0065 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 ID 4 bytes EBCDIC "I400" 0xC9F4F0F0 or
 "T4MV" for TargetFour
 (var) TSize-4 Attribute data (see APPENDIX A)

4.6 Third Party Mappings

 4.6.1 Third party mappings commonly used are:

 0x07c8 Macintosh
 0x2605 ZipIt Macintosh
 0x2705 ZipIt Macintosh 1.3.5+
 0x2805 ZipIt Macintosh 1.3.5+
 0x334d Info-ZIP Macintosh
 0x4341 Acorn/SparkFS
 0x4453 Windows NT security descriptor (binary ACL)
 0x4704 VM/CMS
 0x470f MVS
 0x4b46 FWKCS MD5 (see below)
 0x4c41 OS/2 access control list (text ACL)
 0x4d49 Info-ZIP OpenVMS
 0x4f4c Xceed original location extra field
 0x5356 AOS/VS (ACL)
 0x5455 extended timestamp
 0x554e Xceed unicode extra field
 0x5855 Info-ZIP UnixUNIX (original, also OS/2, NT, etc)
 0x6375 Info-ZIP Unicode Comment Extra Field
 0x6542 BeOS/BeBox
 0x7075 Info-ZIP Unicode Path Extra Field
 0x756e ASi UnixUNIX
 0x7855 Info-ZIP UnixUNIX (new)
 0xa220 Microsoft Open Packaging Growth Hint
 0xfd4a SMS/QDOS

 Detailed descriptions of Extra Fields defined by third
 party mappings will be documented as information on
 these data structures is made available to PKWARE.
 PKWARE does not guarantee the accuracy of any published
 third party data.

 4.6.2 Third-party Extra Fields must include a Header ID using
 the format defined in the section of this document
 titled Extensible Data Fields (section 4.5).

 The Data Size field indicates the size of the following
 data block. Programs can use this value to skip to the
 next header block, passing over any data blocks that are
 not of interest.

 Note: As stated above, the size of the entire .ZIP file
 header, including the file name, comment, and extra
 field should not exceed 64K in size.

 4.6.3 In case two different programs should appropriate the same
 Header ID value, it is strongly recommended that each
 program SHOULD place a unique signature of at least two bytes in
 size (and preferably 4 bytes or bigger) at the start of
 each data area. Every program shouldSHOULD verify that its
 unique signature is present, in addition to the Header ID
 value being correct, before assuming that it is a block of
 known type.

 -ZIP64 Extended Information Extra Field (0x0001):

 The following is the layout of the ZIP64 extended
 information "extra" block. If one of the size or
 offset fields in the Local or Central directory
 record is too small to hold the required data,
 a ZIP64 extended information record is created.
 The order of the fields in the ZIP64 extended
 information record is fixed, but the fields will
 only appear if the corresponding Local or Central
 directory record field is set to 0xFFFF or 0xFFFFFFFF.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (ZIP64) 0x0001 2 bytes Tag for this "extra" block type
 Size 2 bytes Size of this "extra" block
 Original
 Size 8 bytes Original uncompressed file size
 Compressed
 Size 8 bytes Size of compressed data
 Relative Header
 Offset 8 bytes Offset of local header record
 Disk Start
 Number 4 bytes Number of the disk on which
 this file starts

 This entry in the Local header must include BOTH original
 and compressed file sizes.

 -OS/2 Extra Field (0x0009):

 The following is the layout of the OS/2 attributes "extra"
 block. (Last Revision 09/05/95)

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (OS/2) 0x0009 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 BSize 4 bytes Uncompressed Block Size
 CType 2 bytes Compression type
 EACRC 4 bytes CRC value for uncompress block
 (var) variable Compressed block

 The OS/2 extended attribute structure (FEA2LIST) is
 compressed and then stored in it's entirety within this
 structure. There will only ever be one "block" of data in
 VarFields[].

 -NTFS Extra Field (0x000a):

 The following is the layout of the NTFS attributes
 "extra" block. (Note: At this time the Mtime, Atime
 and Ctime values may be used on any WIN32 system.)

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (NTFS) 0x000a 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 Reserved 4 bytes Reserved for future use
 Tag1 2 bytes NTFS attribute tag value #1
 Size1 2 bytes Size of attribute #1, in bytes
 (var.) Size1 Attribute #1 data
 .
 .
 .
 TagN 2 bytes NTFS attribute tag value #N
 SizeN 2 bytes Size of attribute #N, in bytes
 (var.) SizeN Attribute #N data

 For NTFS, values for Tag1 through TagN are as follows:
 (currently only one set of attributes is defined for NTFS)

 Tag Size Description
 ----- ---- -----------
 0x0001 2 bytes Tag for attribute #1
 Size1 2 bytes Size of attribute #1, in bytes
 Mtime 8 bytes File last modification time
 Atime 8 bytes File last access time
 Ctime 8 bytes File creation time

 -OpenVMS Extra Field (0x000c):

 The following is the layout of the OpenVMS attributes
 "extra" block.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (VMS) 0x000c 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 CRC 4 bytes 32-bit CRC for remainder of the block
 Tag1 2 bytes OpenVMS attribute tag value #1
 Size1 2 bytes Size of attribute #1, in bytes
 (var.) Size1 Attribute #1 data
 .
 .
 .
 TagN 2 bytes OpenVMS attribute tage value #N
 SizeN 2 bytes Size of attribute #N, in bytes
 (var.) SizeN Attribute #N data

 Rules:

 1. There will be one or more of attributes present, which
 will each be preceded by the above TagX & SizeX values.
 These values are identical to the ATR$C_XXXX and
 ATR$S_XXXX constants which are defined in ATR.H under
 OpenVMS C. Neither of these values will ever be zero.

 2. No word alignment or padding is performed.

 3. A well-behaved PKZIP/OpenVMS program should never produce
 more than one sub-block with the same TagX value. Also,
 there will never be more than one "extra" block of type
 0x000c in a particular directory record.

 -UNIX Extra Field (0x000d):

 The following is the layout of the Unix "extra" block.
 Note: all fields are stored in Intel low-byte/high-byte
 order.

 Value Size Description
 ----- ---- -----------
 (UNIX) 0x000d 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 Atime 4 bytes File last access time
 Mtime 4 bytes File last modification time
 Uid 2 bytes File user ID
 Gid 2 bytes File group ID
 (var) variable Variable length data field

 The variable length data field will contain file type
 specific data. Currently the only values allowed are
 the original "linked to" file names for hard or symbolic
 links, and the major and minor device node numbers for
 character and block device nodes. Since device nodes
 cannot be either symbolic or hard links, only one set of
 variable length data is stored. Link files will have the
 name of the original file stored. This name is NOT NULL
 terminated. Its size can be determined by checking TSize -
 12. Device entries will have eight bytes stored as two 4
 byte entries (in little endian format). The first entry
 will be the major device number, and the second the minor
 device number.

 -PATCH Descriptor Extra Field (0x000f):

 The following is the layout of the Patch Descriptor "extra"
 block.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (Patch) 0x000f 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the total "extra" block
 Version 2 bytes Version of the descriptor
 Flags 4 bytes Actions and reactions (see below)
 OldSize 4 bytes Size of the file about to be patched
 OldCRC 4 bytes 32-bit CRC of the file to be patched
 NewSize 4 bytes Size of the resulting file
 NewCRC 4 bytes 32-bit CRC of the resulting file

 Actions and reactions

 Bits Description
 ---- ----------------
 0 Use for auto detection
 1 Treat as a self-patch
 2-3 RESERVED
 4-5 Action (see below)
 6-7 RESERVED
 8-9 Reaction (see below) to absent file
 10-11 Reaction (see below) to newer file
 12-13 Reaction (see below) to unknown file
 14-15 RESERVED
 16-31 RESERVED

 Actions

 Action Value
 ------ -----
 none 0
 add 1
 delete 2
 patch 3

 Reactions

 Reaction Value
 -------- -----
 ask 0
 skip 1
 ignore 2
 fail 3

 Patch support is provided by PKPatchMaker(tm) technology and is
 covered under U.S. Patents and Patents Pending.

 -PKCS#7 Store for X.509 Certificates (0x0014):

 This field contains information about each of the certificates
 files may be signed with. When the Central Directory Encryption
 feature is enabled for a ZIP file, this record will appear in
 the Archive Extra Data Record, otherwise it will appear in the
 first central directory record and will be ignored in any
 other record.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (Store) 0x0014 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the store data
 TData TSize Data about the store

 -X.509 Certificate ID and Signature for individual file (0x0015):

 This field contains the information about which certificate in
 the PKCS#7 store was used to sign a particular file. It also
 contains the signature data. This field can appear multiple
 times, but can only appear once per certificate.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (CID) 0x0015 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 TData TSize Signature Data

 -X.509 Certificate ID and Signature for central directory (0x0016):

 This field contains the information about which certificate in
 the PKCS#7 store was used to sign the central directory structure.
 When the Central Directory Encryption feature is enabled for a
 ZIP file, this record will appear in the Archive Extra Data Record,
 otherwise it will appear in the first central directory record.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (CDID) 0x0016 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 TData TSize Data

 -Strong Encryption Header (0x0017) (EFS):

 Value Size Description
 ----- ---- -----------
 0x0017 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of data that follows
 Format 2 bytes Format definition for this record
 AlgID 2 bytes Encryption algorithm identifier
 Bitlen 2 bytes Bit length of encryption key
 Flags 2 bytes Processing flags
 CertData TSize-8 Certificate decryption extra field data
 (refer to the explanation for CertData
 in the section describing the
 Certificate Processing Method under
 the Strong Encryption Specification)

 -Record Management Controls (0x0018):

 Value Size Description
 ----- ---- -----------
(Rec-CTL) 0x0018 2 bytes Tag for this "extra" block type
 CSize 2 bytes Size of total extra block data
 Tag1 2 bytes Record control attribute 1
 Size1 2 bytes Size of attribute 1, in bytes
 Data1 Size1 Attribute 1 data
 .
 .
 .
 TagN 2 bytes Record control attribute N
 SizeN 2 bytes Size of attribute N, in bytes
 DataN SizeN Attribute N data

 -PKCS#7 Encryption Recipient Certificate List (0x0019): (EFS)

 This field contains the information about each of the certificates
 that files may be encrypted with. This field should only appear
 in the archive extra data record. This field is not required and
 serves only to aide archive modifications by preserving public
 encryption data.
 Individual security requirements may dictate
 that this data be omitted to deter information exposure.

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 (CStore) 0x0019 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size of the store data
 TData TSize Data about the store

 TData:

 Value Size Description
 ----- ---- -----------
 Version 2 bytes Format version number - must 0x0001 at this time
 CStore (var) PKCS#7 data blob

 -MVS Extra Field (0x0065):

 The following is the layout of the MVS "extra" block.
 Note: Some fields are stored in Big Endian format.
 All text is in EBCDIC format unless otherwise specified.

 Value Size Description
 ----- ---- -----------
 (MVS) 0x0065 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 ID 4 bytes EBCDIC "Z390" 0xE9F3F9F0 or
 "T4MV" for TargetFour
 (var) TSize-4 Attribute data

 -OS/400 Extra Field (0x0065):

 The following is the layout of the OS/400 "extra" block.
 Note: Some fields are stored in Big Endian format.
 All text is in EBCDIC format unless otherwise specified.

 Value Size Description
 ----- ---- -----------
 (OS400) 0x0065 2 bytes Tag for this "extra" block type
 TSize 2 bytes Size for the following data block
 ID 4 bytes EBCDIC "I400" 0xC9F4F0F0 or
 "T4MV" for TargetFour
 (var) TSize-4 Attribute data

 Third-party Mappings:

 4.6.4 -ZipIt Macintosh Extra Field (long) (0x2605):

 The following is the layout of the ZipIt extra block
 for Macintosh. The local-header and central-header versions
 are identical. This block must be present if the file is
 stored MacBinary-encoded and it should not be used if the file
 is not stored MacBinary-encoded.

 Value Size Description
 ----- ---- -----------
 (Mac2) 0x2605 Short tag for this extra block type
 TSize Short total data size for this block
 "ZPIT" beLong extra-field signature
 FnLen Byte length of FileName
 FileName variable full Macintosh filename
 FileType Byte[4] four-byte Mac file type string
 Creator Byte[4] four-byte Mac creator string

 4.6.5 -ZipIt Macintosh Extra Field (short, for files) (0x2705):

 The following is the layout of a shortened variant of the
 ZipIt extra block for Macintosh (without "full name" entry).
 This variant is used by ZipIt 1.3.5 and newer for entries of
 files (not directories) that do not have a MacBinary encoded
 file. The local-header and central-header versions are identical.

 Value Size Description
 ----- ---- -----------
 ----- ---- -----------
 (Mac2b) 0x2705 Short tag for this extra block type
 TSize Short total data size for this block (12)
 "ZPIT" beLong extra-field signature
 FileType Byte[4] four-byte Mac file type string
 Creator Byte[4] four-byte Mac creator string
 fdFlags beShort attributes from FInfo.frFlags,
 may be omitted
 0x0000 beShort reserved, may be omitted

 4.6.6 -ZipIt Macintosh Extra Field (short, for directories) (0x2805):

 The following is the layout of a shortened variant of the
 ZipIt extra block for Macintosh used only for directory
 entries. This variant is used by ZipIt 1.3.5 and newer to
 save some optional Mac-specific information about directories.
 The local-header and central-header versions are identical.

 Value Size Description
 ----- ---- -----------
 ----- ---- -----------
 (Mac2c) 0x2805 Short tag for this extra block type
 TSize Short total data size for this block (12)
 "ZPIT" beLong extra-field signature
 frFlags beShort attributes from DInfo.frFlags, may
 be omitted
 View beShort ZipIt view flag, may be omitted

 The View field specifies ZipIt-internal settings as follows:

 Bits of the Flags:
 bit 0 if set, the folder is shown expanded (open)
 when the archive contents are viewed in ZipIt.
 bits 1-15 reserved, zero;

 4.6.7 -FWKCS MD5 Extra Field (0x4b46):

 The FWKCS Contents_Signature System, used in
 automatically identifying files independent of file name,
 optionally adds and uses an extra field to support the
 rapid creation of an enhanced contents_signature:

 Header ID = 0x4b46
 Data Size = 0x0013
 Preface = 'M','D','5'
 followed by 16 bytes containing the uncompressed file's
 128_bit MD5 hash(1), low byte first.

 When FWKCS revises a .ZIP file central directory to add
 this extra field for a file, it also replaces the
 central directory entry for that file's uncompressed
 file length with a measured value.

 FWKCS provides an option to strip this extra field, if
 present, from a .ZIP file central directory. In adding
 this extra field, FWKCS preserves .ZIP file Authenticity
 Verification; if stripping this extra field, FWKCS
 preserves all versions of AV through PKZIP version 2.04g.

 FWKCS, and FWKCS Contents_Signature System, are
 trademarks of Frederick W. Kantor.

 (1) R. Rivest, RFC1321.TXT, MIT Laboratory for Computer
 Science and RSA Data Security, Inc., April 1992.
 ll.76-77: "The MD5 algorithm is being placed in the
 public domain for review and possible adoption as a
 standard."

 4.6.8 -Info-ZIP Unicode Comment Extra Field (0x6375):

 Stores the UTF-8 version of the file comment: (Variable)

 The comment for this file.

 as stored in the
 number of this disk: (2 bytes)

 The number of this disk, which contains central
 directory end record. If an archive is in zip64 format
 header. (Last Revision 20070912)

 Value Size Description
 ----- ---- -----------
 (UCom) 0x6375 Short tag for this extra block type ("uc")
 TSize Short and the value in this field is 0xFFFF, the size will
 be in the corresponding 4 byte zip64 end of central
 directory field.

 number of the disk with the start of the central
 directory: (2 bytes)

 The number of the disk on which the central
 directory starts. If an archive is in zip64 format
 and the value in this field is 0xFFFF, the size will
 be in the corresponding 4 byte zip64 end of central
 directory field.

 total number of entries in the central dir on
 data size this disk: (2 bytes)

 The number of central directory entries on this disk.
 If an archive is in zip64 format and the value in
 this field is 0xFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 total number of entries in the central dir: (2 bytes)

 The total number of files in the .ZIP file. If an
 archive is in zip64 format and the value in this field
 is 0xFFFF, the size will be in the corresponding 8 byte
 zip64 end of central directory field.

 size of the central directory: (4 bytes)

 The size (in bytes) of the entire central directory.
 If an archive is in zip64 format and the value in
 this field is 0xFFFFFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 offset of start of central directory with respect to
 the starting disk number: (4 bytes)

 Offset of the start of the central directory on the
 disk on which the central directory starts. If an
 archive is in zip64 format and the value in this
 field is 0xFFFFFFFF, the size will be in the
 corresponding 8 byte zip64 end of central
 directory field.

 .ZIP file comment length: (2 bytes)

 The length of the comment for this .ZIP file.

 .ZIP block
 Version 1 byte version of this extra field, currently 1
 ComCRC32 4 bytes Comment Field CRC32 Checksum
 UnicodeCom Variable UTF-8 version of the entry comment

 Currently Version is set to the number 1. If there is a need
 to change this field, the version will be incremented. Changes
 file comment: (Variable)

 The comment for this .ZIP file. ZIP file comment data
 is stored unsecured. No encryption or data authentication
 is applied to this area at this time. Confidential information
 should not be stored in this section.

 zip64 extensible data sector (variable size)

 (currently reserved for use by PKWARE)

 K. General notes:

 1) All fields unless otherwise noted are unsigned and stored
 in Intel low-byte:high-byte, low-word:high-word order.

 2) String fields are not null terminated, since the
 length is given explicitly.

 3) Local headers should not span disk boundaries. Also, even
 though the central directory can span disk boundaries, no
 single record in the central directory should be split
 across disks.

 4) The entries in the central directory may not necessarily
 be backward be in the same order that files appear in the .ZIP file.

 5) Spanned/Split archives created using PKZIP for Windows
 (V2.50 or greater), PKZIP Command Line (V2.50 or greater),
 or PKZIP Explorer will include a special spanning
 signature as the first 4 bytes of the first segment of
 the archive. This signature (0x08074b50) will be
 followed immediately by the local header signature for
 the first file in the archive. A special spanning
 marker may also appear in spanned/split archives if the
 spanning or splitting process starts but only requires
 one segment. In this case the 0x08074b50 signature
 will be replaced with the temporary spanning marker
 signature of 0x30304b50. Spanned/split archives
 created with this special signature are compatible with
 all versions of PKZIP from PKWARE. Split archives can
 only be uncompressed by other versions of PKZIP that
 so this extra field should not be
 used if the version is not recognized.

 The ComCRC32 is the standard zip CRC32 checksum of the File Comment
 field in the central directory header. This is used to verify that
 the comment field has not changed since the Unicode Comment extra field
 was created. This can happen if a utility changes the File Comment
 field but does not update the UTF-8 Comment extra field. know how to create a split archive.

 6) If onethe CRC
 check fails, this Unicode Comment extra field should be ignored and
 the File Comment field in the header should be used instead.

 The UnicodeCom field is the UTF-8 version of the File Comment field
 in the header. As UnicodeCom is defined to be UTF-8, no UTF-8 byte
 order mark (BOM) is used. The length of the this field is determined by
 subtracting the size of the previous fields in the end of central directory
 record is too small to hold required data, the field
 from TSize. If both the
 File Name and Comment fields are UTF-8, the new General Purpose Bit
 Flag, bit 11 (Language encoding flag (EFS)), can be used to indicate
 both the header File Name and Comment fields are UTF-8 and, in this
 case, the Unicode Path and Unicode Comment extra fields are not
 needed and should not be created. Note that, for backward
 compatibility, bit 11 should only be used if the native character set to -1 (0xFFFF
 of the paths and comments being zipped up are already in UTF-8. It is
 expected that the same file comment storage method, either general
 purpose bit 11 or 0xFFFFFFFF)extra fields, be used in both the Local and the
 Zip64 format recordCentral
 Directory Header for a file.

 4.6.9 -Info-ZIP Unicode Path Extra Field (0x7075):

 Stores the UTF-8 version of the file name field as stored in the
 local header and central directory header. (Last Revision 20070912)

 Value Size Description
 ----- ---- -----------
 (UPath) 0x7075 Short tag for this extra block type ("up")
 TSize Short total data size for this block
 Version 1 byte version of this extra field, currently 1
 NameCRC32 4 bytes File Name Field CRC32 Checksum
 UnicodeName Variable UTF-8 version of the entry File Name

 Currently Version is set to the number 1. If there is a need
 to change this field, the version will be incremented. Changes
 may not be backward compatible so this extra field should not be
 used if the version is not recognized.

 The NameCRC32 is the standard zip CRC32 checksum of the File Name
 field in the header. This is used to verify that the header
 File Name field has not changed since the Unicode Path extra field
 was created. This can happen if a utility renames the File Name but
 does not update the UTF-8 path extra field. If the CRC check fails,
 this UTF-8 Path Extra Field should be created.

 7) The end of central directory recordignored and the
 Zip64 end of central directory locator record must
 reside on File Name field
 in the header should be used instead.

 The UnicodeName is the UTF-8 version of the contents of the File Name
 field in the header. As UnicodeName is defined to be UTF-8, no UTF-8
 byte order mark (BOM) is used. The length of this field is determined
 by subtracting the size of the previous fields from TSize. If both
 the File Name and Comment fields are UTF-8, the new General Purpose
 Bit Flag, bit 11 (Language encoding flag (EFS)), can be used to
 indicate that both the header File Name and Comment fields are UTF-8
 and, in this case, the Unicode Path and Unicode Comment extra fields
 are not needed and should not be created. Note that, for backward
 compatibility, bit 11 should only be used if the native character set
 of the paths and comments being zipped up are already in UTF-8. It is
 expected that the same disk when splitting or spanning
 an archive.

V.file name storage method, either general
 purpose bit 11 or extra fields, be used in both the Local and Central
 Directory Header for a file.

 4.6.10 -Microsoft Open Packaging Growth Hint (0xa220):

 Value Size Description
 ----- ---- -----------
 0xa220 Short tag for this extra block type
 TSize Short size of Sig + PadVal + Padding
 Sig Short verification signature (A028)
 PadVal Short Initial padding value
 Padding variable filled with NULL characters

4.7 Manifest Files

 4.7.1 Applications using ZIP files may have a need for additional
 information that must be included with the files placed into
 a ZIP file. Application specific information that cannot be
 stored using the defined ZIP storage records SHOULD be stored
 using the extensible Extra Field convention defined in this
 document. However, some applications may use a manifest
 file as a means for storing additional information. One
 example is the META-INF/MANIFEST.MF file used in ZIP formatted
 files having the .JAR extension (JAR files).

 4.7.2 A manifest file is a file created for the application process
 that requires this information. A manifest file MAY be of any
 file type required by the defining application process. It is
 placed within the same ZIP file as files to which this information
 applies. By convention, this file is typically the first file placed
 into the ZIP file and it may include a defined directory path.

 4.7.3 Manifest files may be compressed or encrypted as needed for
 application processing of the files inside the ZIP files.

 Manifest files are outside of the scope of this specification.

5.0 Explanation of compression methods

5.1 UnShrinking - Method 1

 5.1.1 Shrinking is a Dynamic Ziv-Lempel-Welch compression algorithm
 with partial clearing. The initial code size is 9 bits, and
 the
 maximum code size is 13 bits. Shrinking differs from
 conventional
 Dynamic Ziv-Lempel-Welch implementations in several
 respects:

 5.1) .2 The code size is controlled by the compressor, and is
 not
 automatically increased when codes larger than the current
 code size are created (but not necessarily used). When
 the decompressor encounters the code sequence 256
 (decimal) followed by 1, it should increase the code size
 read from the input stream to the next bit size. No
 blocking of the codes is performed, so the next code at
 the increased size should be read from the input stream
 immediately after where the previous code at the smaller
 bit size was read. Again, the decompressor should not
 increase the code size used until the sequence 256,1 is
 encountered.

2) 5.1.3 When the table becomes full, total clearing is not
 performed. Rather, when the compressor emits the code
 sequence 256,2 (decimal), the decompressor should clear
 all leaf nodes from the Ziv-Lempel tree, and continue to
 use the current code size. The nodes that are cleared
 from the Ziv-Lempel tree are then re-used, with the lowest
 code value re-used first, and the highest code value
 re-used last. The compressor can emit the sequence 256,2
 at any time.

VI.5.2 Expanding - Methods 2-5

 5.2.1 The Reducing algorithm is actually a combination of two
 distinct algorithms. The first algorithm compresses repeated
 byte sequences, and the second algorithm takes the compressed
 stream from the first algorithm and applies a probabilistic
 compression method.

 5.2.2 The probabilistic compression stores an array of 'follower
 sets' S(j), for j=0 to 255, corresponding to each possible
 ASCII character. Each set contains between 0 and 32
 characters, to be denoted as S(j)[0],...,S(j)[m], where m<32.
 The sets are stored at the beginning of the data area for a
 Reduced file, in reverse order, with S(255) first, and S(0)
 last.

 5.2.3 The sets are encoded as { N(j), S(j)[0],...,S(j)[N(j)-1] },
 where N(j) is the size of set S(j). N(j) can be 0, in which
 case the follower set for S(j) is empty. Each N(j) value is
 encoded in 6 bits, followed by N(j) eight bit character values
 corresponding to S(j)[0] to S(j)[N(j)-1] respectively. If
 N(j) is 0, then no values for S(j) are stored, and the value
 for N(j-1) immediately follows.

 5.2.4 Immediately after the follower sets, is the compressed data
 stream. The compressed data stream can be interpreted for the
 probabilistic decompression as follows:

 let Last-Character <- 0.
 loop until done
 if the follower set S(Last-Character) is empty then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if the follower set S(Last-Character) is non-empty then
 read 1 bit from the input stream.
 if this bit is not zero then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if the follower set S(Last-Character) is non-empty then
 read 1 bit from the input stream.
 if this bit is not zero then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if this bit is zero then
 read B(N(Last-Character)) bits from the input
 stream, and assign this value to I.
 Copy the value of S(Last-Character)[I] to the
 output stream.

 assign the last value placed on the output stream to
 Last-Character.
 end loop

 B(N(j)) is defined as the minimal number of bits required to
 encode the value N(j)-1.

 5.2.5 The decompressed stream from above can then be expanded to
 re-create the original file as follows:

 let State <- 0.

 loop until done
 read 8 bits from the input stream into C.
 case State of
 0: if C is not equal to DLE (144 decimal) then
 copy C to the output stream.
 otherwise if C is equal to DLE then
 let State <- 1.

 1: if C is non-zero then
 let V <- C.
 let Len <- L(V)
 let State <- F(Len).
 otherwise if C is zero then
 copy the value 144 (decimal) to the output stream.
 let State <- 0

 2: let Len <- Len + C
 let State <- 3.

 3: move backwards D(V,C) bytes in the output stream
 (if this position is before the start of the output
 stream, then assume that all the data before the
 start of the output stream is filled with zeros).
 copy Len+3 bytes from this position to the output stream.
 let State <- 0.
 end case
 end loop

 The functions F,L, and D are dependent on the 'compression
 factor', 1 through 4, and are defined as follows:

 For compression factor 1:
 L(X) equals the lower 7 bits of X.
 F(X) equals 2 if X equals 127 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 1 bit of X) * 256 + Y + 1.
 For compression factor 2:
 L(X) equals the lower 6 bits of X.
 F(X) equals 2 if X equals 63 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 2 bits of X) * 256 + Y + 1.
 For compression factor 3:
 L(X) equals the lower 5 bits of X.
 F(X) equals 2 if X equals 31 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 3 bits of X) * 256 + Y + 1.
 For compression factor 4:
 L(X) equals the lower 4 bits of X.
 F(X) equals 2 if X equals 15 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 4 bits of X) * 256 + Y + 1.

VII.5.3 Imploding - Method 6

 5.3.1 The Imploding algorithm is actually a combination of two
 distinct
 algorithms. The first algorithm compresses repeated byte
 sequences using a sliding dictionary. The second algorithm is
 used to compress the encoding of the sliding dictionary output,
 using multiple Shannon-Fano trees.

 5.3.2 The Imploding algorithm can use a 4K or 8K sliding dictionary
 size. The dictionary size used can be determined by bit 1 in the
 general purpose flag word; a 0 bit indicates a 4K dictionary
 while a 1 bit indicates an 8K dictionary.

 5.3.3 The Shannon-Fano trees are stored at the start of the
 compressed
 file. The number of trees stored is defined by bit 2 in
 the
 general purpose flag word; a 0 bit indicates two trees stored,
 a
 1 bit indicates three trees are stored. If 3 trees are stored,
 the first Shannon-Fano tree represents the encoding of the
 Literal characters, the second tree represents the encoding of
 the Length information, the third represents the encoding of the
 Distance information. When 2 Shannon-Fano trees are stored, the
 Length tree is stored first, followed by the Distance tree.

 5.3.4 The Literal Shannon-Fano tree, if present is used to represent
 the entire ASCII character set, and contains 256 values. This
 tree is used to compress any data not compressed by the sliding
 dictionary algorithm. When this tree is present, the Minimum
 Match Length for the sliding dictionary is 3. If this tree is
 not present, the Minimum Match Length is 2.

 5.3.5 The Length Shannon-Fano tree is used to compress the Length
 part
 of the (length,distance) pairs from the sliding dictionary
 output. The Length tree contains 64 values, ranging from the
 Minimum Match Length, to 63 plus the Minimum Match Length.

 5.3.6 The Distance Shannon-Fano tree is used to compress the Distance
 part of the (length,distance) pairs from the sliding dictionary
 output. The Distance tree contains 64 values, ranging from 0 to
 63, representing the upper 6 bits of the distance value. The
 distance values themselves will be between 0 and the sliding
 dictionary size, either 4K or 8K.

 5.3.7 The Shannon-Fano trees themselves are stored in a compressed
 format. The first byte of the tree data represents the number of
 bytes of data representing the (compressed) Shannon-Fano tree
 minus 1. The remaining bytes represent the Shannon-Fano tree
 data encoded as:

 High 4 bits: Number of values at this bit length + 1. (1 - 16)
 Low 4 bits: Bit Length needed to represent value + 1. (1 - 16)

 5.3.8 The Shannon-Fano codes can be constructed from the bit lengths
 using the following algorithm:

 1) Sort the Bit Lengths in ascending order, while retaining the
 order of the original lengths stored in the file.

 2) Generate the Shannon-Fano trees:

 Code <- 0
 CodeIncrement <- 0
 LastBitLength <- 0
 i <- number of Shannon-Fano codes - 1 (either 255 or 63)

 loop while i >= 0
 Code = Code + CodeIncrement
 if BitLength(i) <> LastBitLength then
 LastBitLength=BitLength(i)
 CodeIncrement = 1 shifted left (16 - LastBitLength)
 ShannonCode(i) = Code
 i <- i - 1
 end loop

 3) Reverse the order of all the bits in the above ShannonCode()
 vector, so that the most significant bit becomes the least
 significant bit. For example, the value 0x1234 (hex) would
 become 0x2C48 (hex).

 4) Restore the order of Shannon-Fano codes as originally stored
 within the file.

 Example:

 This example will show the encoding of a Shannon-Fano tree
 of size 8. Notice that the actual Shannon-Fano trees used
 for Imploding are either 64 or 256 entries in size.

 Example: 0x02, 0x42, 0x01, 0x13

 The first byte indicates 3 values in this table. Decoding the
 bytes:
 0x42 = 5 codes of 3 bits long
 0x01 = 1 code of 2 bits long
 0x13 = 2 codes of 4 bits long

 This would generate the original bit length array of:
 (3, 3, 3, 3, 3, 2, 4, 4)

 There are 8 codes in this table for the values 0 thru 7. Using
 the algorithm to obtain the Shannon-Fano codes produces:

 Reversed Order Original
 Val Sorted Constructed Code Value Restored Length
--- ------ ----------------- -------- -------- ------
 --- ------ ----------------- -------- -------- ------
 0: 2 1100000000000000 11 101 3
 1: 3 1010000000000000 101 001 3
 2: 3 1000000000000000 001 110 3
 3: 3 0110000000000000 110 010 3
 4: 3 0100000000000000 010 100 3
 5: 3 0010000000000000 100 11 2
 6: 4 0001000000000000 1000 1000 4
 7: 4 0000000000000000 0000 0000 4

 The values in the Val, Order Restored and Original Length columns
 now represent the Shannon-Fano encoding tree that can be used for
 decoding the Shannon-Fano encoded data. How to parse the
 variable length Shannon-Fano values from the data stream is beyond
 the scope of this document. (See the references listed at the end of
 this document for more information.) However, traditional decoding
 schemes used for Huffman variable length decoding, such as the
 Greenlaw algorithm, can be successfully applied.

 5.3.9 The compressed data stream begins immediately after the
 compressed Shannon-Fano data. The compressed data stream can be
 interpreted as follows:

 loop until done
 read 1 bit from input stream.

 if this bit is non-zero then (encoded data is literal data)
 if Literal Shannon-Fano tree is present
 read and decode character using Literal Shannon-Fano tree.
 otherwise
 read 8 bits from input stream.
 copy character to the output stream.
 otherwise (encoded data is sliding dictionary match)
 if 8K dictionary size
 read 7 bits for offset Distance (lower 7 bits of offset).
 otherwise
 read 6 bits for offset Distance (lower 6 bits of offset).

 using the Distance Shannon-Fano tree, read and decode the
 upper 6 bits of the Distance value.

 using the Length Shannon-Fano tree, read and decode
 the Length value.

 Length <- Length + Minimum Match Length

 if Length = 63 + Minimum Match Length
 read 8 bits from the input stream,
 add this value to Length.

 move backwards Distance+1 bytes in the output stream, and
 copy Length characters from this position to the output
 stream. (if this position is before the start of the output
 stream, then assume that all the data before the start of
 the output stream is filled with zeros).
 end loop

VIII.5.4 Tokenizing - Method 7

 5.4.1 This method is not used by PKZIP.

IX.5.5 Deflating - Method 8

 5.5.1 The Deflate algorithm is similar to the Implode algorithm using
 a sliding dictionary of up to 32K with secondary compression
 from Huffman/Shannon-Fano codes.

 5.5.2 The compressed data is stored in blocks with a header describing
 the block and the Huffman codes used in the data block. The header
 format is as follows:

 Bit 0: Last Block bit This bit is set to 1 if this is the last
 compressed block in the data.
 Bits 1-2: Block type
 00 (0) - Block is stored - All stored data is byte aligned.
 Skip bits until next byte, then next word = block
 length, followed by the ones compliment of the block
 length word. Remaining data in block is the stored
 data.

 01 (1) - Use fixed Huffman codes for literal and distance codes.
 Lit Code Bits Dist Code Bits
 --------- ---- --------- ----
 --------- ---- --------- ----
 0 - 143 8 0 - 31 5
 144 - 255 9
 256 - 279 7
 280 - 287 8

 Literal codes 286-287 and distance codes 30-31 are
 never used but participate in the huffman construction.

 10 (2) - Dynamic Huffman codes. (See expanding Huffman codes)

 11 (3) - Reserved - Flag a "Error in compressed data" if seen.

 5.5.3 Expanding Huffman Codes

 If the data block is stored with dynamic Huffman codes, the Huffman
 codes are sent in the following compressed format:

 5 Bits: # of Literal codes sent - 256 (256 - 286)
 All other codes are never sent.
 5 Bits: # of Dist codes - 1 (1 - 32)
 4 Bits: # of Bit Length codes - 3 (3 - 19)

 The Huffman codes are sent as bit lengths and the codes are built as
 described in the implode algorithm. The bit lengths themselves are
 compressed with Huffman codes. There are 19 bit length codes:

 0 - 15: Represent bit lengths of 0 - 15
 16: Copy the previous bit length 3 - 6 times.
 The next 2 bits indicate repeat length (0 = 3, ... ,3 = 6)
 Example: Codes 8, 16 (+2 bits 11), 16 (+2 bits 10) will
 expand to 12 bit lengths of 8 (1 + 6 + 5)
 17: Repeat a bit length of 0 for 3 - 10 times. (3 bits of length)
 18: Repeat a bit length of 0 for 11 - 138 times (7 bits of length)

 The lengths of the bit length codes are sent packed 3 bits per value
 (0 - 7) in the following order:

 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

 The Huffman codes should be built as described in the Implode algorithm
 except codes are assigned starting at the shortest bit length, i.e. the
 shortest code should be all 0's rather than all 1's. Also, codes with
 a bit length of zero do not participate in the tree construction. The
 codes are then used to decode the bit lengths for the literal and
 distance tables.

 The bit lengths for the literal tables are sent first with the number
 of entries sent described by the 5 bits sent earlier. There are up
 to 286 literal characters; the first 256 represent the respective 8
 bit character, code 256 represents the End-Of-Block code, the remaining
 29 codes represent copy lengths of 3 thru 258. There are up to 30
 distance codes representing distances from 1 thru 32k as described
 below.

 Length Codes

 Extra Extra Extra Extra
 Code Bits Length Code Bits Lengths Code Bits Lengths Code Bits Length(s)
 ---- ---- ------ ---- ---- ------- ---- ---- ------- ---- ---- ---------
 ---- ---- ------ ---- ---- ------- ---- ---- ------- ---- ---- ---------
 257 0 3 265 1 11,12 273 3 35-42 281 5 131-162
 258 0 4 266 1 13,14 274 3 43-50 282 5 163-194
 259 0 5 267 1 15,16 275 3 51-58 283 5 195-226
 260 0 6 268 1 17,18 276 3 59-66 284 5 227-257
 261 0 7 269 2 19-22 277 4 67-82 285 0 258
 262 0 8 270 2 23-26 278 4 83-98
 263 0 9 271 2 27-30 279 4 99-114
 264 0 10 272 2 31-34 280 4 115-130

 Distance Codes

 Extra Extra Extra Extra
 Code Bits Dist Code Bits Dist Code Bits Distance Code Bits Distance
 ---- ---- ---- ---- ---- ------ ---- ---- -------- ---- ---- --------
 ---- ---- ---- ---- ---- ------ ---- ---- -------- ---- ---- --------
 0 0 1 8 3 17-24 16 7 257-384 24 11 4097-6144
 1 0 2 9 3 25-32 17 7 385-512 25 11 6145-8192
 2 0 3 10 4 33-48 18 8 513-768 26 12 8193-12288
 3 0 4 11 4 49-64 19 8 769-1024 27 12 12289-16384
 4 1 5,6 12 5 65-96 20 9 1025-1536 28 13 16385-24576
 5 1 7,8 13 5 97-128 21 9 1537-2048 29 13 24577-32768
 6 2 9-12 14 6 129-192 22 10 2049-3072
 7 2 13-16 15 6 193-256 23 10 3073-4096

 5.5.4 The compressed data stream begins immediately after the
 compressed header data. The compressed data stream can be
 interpreted as follows:

 do
 read header from input stream.

 if stored block
 skip bits until byte aligned
 read count and 1's compliment of count
 copy count bytes data block
 otherwise
 loop until end of block code sent
 decode literal character from input stream
 if literal < 256
 copy character to the output stream
 otherwise
 if literal = end of block
 break from loop
 otherwise
 decode distance from input stream

 move backwards distance bytes in the output stream, and
 copy length characters from this position to the output
 stream.
 end loop
 while not last block

 if data descriptor exists
 skip bits until byte aligned
 read crc and sizes
 endif

X.5.6 Enhanced Deflating - Method 9

 5.6.1 The Enhanced Deflating algorithm is similar to Deflate but
 uses
 a sliding dictionary of up to 64K. Deflate64(tm) is supported
 by the Deflate extractor.

XI.5.7 BZIP2 - Method 12

 5.7.1 BZIP2 is an open-source data compression algorithm developed by
 Julian Seward. Information and source code for this algorithm
 can be found on the internet.

XII.5.8 LZMA - Method 14

 5.8.1 LZMA is a block-oriented, general purpose data compression
 algorithm developed and maintained by Igor Pavlov. It is a derivative
 of LZ77 that utilizes Markov chains and a range coder. Information and
 source code for this algorithm can be found on the internet. Consult
 with the author of this algorithm for information on terms or
 restrictions on use.

 Support for LZMA within the ZIP format is defined as follows:

 5.8.2 The Compression method field within the ZIP Local and Central
 Header records will be set to the value 14 to indicate data was
 compressed using LZMA.

 5.8.3 The Version needed to extract field within the ZIP Local and
 Central Header records will be set to 6.3 to indicate the minimum
 ZIP format version supporting this feature.

 5.8.4 File data compressed using the LZMA algorithm must be placed
 immediately following the Local Header for the file. If a standard
 ZIP encryption header is required, it will follow the Local Header
 and will precede the LZMA compressed file data segment. The location
 of LZMA compressed data segment within the ZIP format will be as shown:

 [local header file 1]
 [encryption header file 1]
 [LZMA compressed data segment for file 1]
 [data descriptor 1]
 [local header file 2]

 5.8.5 The encryption header and data descriptor records may
 be conditionally present. The LZMA Compressed Data Segment
 will consist of an LZMA Properties Header followed by the
 LZMA Compressed Data as shown:

 [LZMA properties header for file 1]
 [LZMA compressed data for file 1]

 5.8.6 The LZMA Compressed Data will be stored as provided by the
 LZMA compression library. Compressed size, uncompressed size and
 other file characteristics about the file being compressed must be
 stored in standard ZIP storage format.

 5.8.7 The LZMA Properties Header will store specific data required
 to decompress the LZMA compressed Data. This data is set by the
 LZMA compression engine using the function WriteCoderProperties()
 as documented within the LZMA SDK.

 5.8.8 Storage fields for the property information within the LZMA
 Properties Header are as follows:

 LZMA Version Information 2 bytes
 LZMA Properties Size 2 bytes
 LZMA Properties Data variable, defined by "LZMA Properties Size"

 5.8.8.1 LZMA Version Information - this field identifies which version
 of the LZMA SDK was used to compress a file. The first byte will
 store the major version number of the LZMA SDK and the second
 byte will store the minor number.

 5.8.8.2 LZMA Properties Size - this field defines the size of the
 remaining property data. Typically this size should be determined by
 the version of the SDK. This size field is included as a convenience
 and to help avoid any ambiguity should it arise in the future due
 to changes in this compression algorithm.

 5.8.8.3 LZMA Property Data - this variable sized field records the
 required values for the decompressor as defined by the LZMA SDK.
 The data stored in this field should be obtained using the
 WriteCoderProperties() in the version of the SDK defined by
 the "LZMA Version Information" field.

 5.8.8.4 The layout of the "LZMA Properties Data" field is a function of
 the LZMA compression algorithm. It is possible that this layout may be
 changed by the author over time. The data layout in version 4.3 of the
 LZMA SDK defines a 5 byte array that uses 4 bytes to store the dictionary
 size in little-endian order. This is preceded by a single packed byte as
 the first element of the array that contains the following fields:

 PosStateBits
 LiteralPosStateBits
 LiteralContextBits

 Refer to the LZMA documentation for a more detailed explanation of
 these fields.

 5.8.9 Data compressed with method 14, LZMA, may include an end-of-stream
 (EOS) marker ending the compressed data stream. This marker is not
 required, but its use is highly recommended to facilitate processing
 and implementers should include the EOS marker whenever possible.
 When the EOS marker is used, general purpose bit 1 must be set. If
 general purpose bit 1 is not set, the EOS marker is not present.

5.9 WavPack - Method 97

 5.9.1 Information describing the use of compression method 97 is
 provided by WinZIP International, LLC. This method relies on the
 open source WavPack audio compression utility developed by David Bryant.
 Information on WavPack is available at www.wavpack.com. Please consult
 with the author of this algorithm for information on terms and
 restrictions on use.

 5.9.2 WavPack data for a file begins immediately after the end of the
 local header data. This data is the output from WavPack compression
 routines. Within the ZIP file, the use of WavPack compression is
 indicated by setting the compression method field to a value of 97
 in both the local header and the central directory header. The Version
 needed to extract and version made by fields use the same values as are
 used for data compressed using the Deflate algorithm.

 5.9.3 An implementation note for storing digital sample data when using
 WavPack compression within ZIP files is that all of the bytes of
 the sample data should be compressed. This includes any unused
 bits up to the byte boundary. An example is a 2 byte sample that
 uses only 12 bits for the sample data with 4 unused bits. If only
 12 bits are passed as the sample size to the WavPack routines, the 4
 unused bits will be set to 0 on extraction regardless of their original
 state. To avoid this, the full 16 bits of the sample data size
 should be provided.

5.10 PPMd - Method 98

 5.10.1 PPMd is a data compression algorithm developed by Dmitry Shkarin
 which includes a carryless rangecoder developed by Dmitry Subbotin.
 This algorithm is based on predictive phrase matching on multiple
 order contexts. Information and source code for this algorithm
 can be found on the internet. Consult with the author of this
 algorithm for information on terms or restrictions on use.

 5.10.2 Support for PPMd within the ZIP format currently is provided only
 for version I, revision 1 of the algorithm. Storage requirements
 for using this algorithm are as follows:

 5.10.3 Parameters needed to control the algorithm are stored in the two
 bytes immediately preceding the compressed data. These bytes are
 used to store the following fields:

 Model order - sets the maximum model order, default is 8, possible
 values are from 2 to 16 inclusive

 Sub-allocator size - sets the size of sub-allocator in MB, default is 50,
 possible values are from 1MB to 256MB inclusive

 Model restoration method - sets the method used to restart context
 model at memory insufficiency, values are:

 0 - restarts model from scratch - default
 1 - cut off model - decreases performance by as much as 2x
 2 - freeze context tree - not recommended

 5.10.4 An example for packing these fields into the 2 byte storage field is
 illustrated below. These values are stored in Intel low-byte/high-byte
 order.

 wPPMd = (Model order - 1) +
 ((Sub-allocator size - 1) << 4) +
 (Model restoration method << 12)

6.0 Traditional PKWARE Encryption

 6.0.1 The following information discusses the decryption steps
 required to support traditional PKWARE encryption. This
 form of encryption is considered weak by today's standards
 and its use is recommended only for situations with
 low security needs or for compatibility with older .ZIP
 applications.

XIII. 6.1 Traditional PKWARE Decryption

The encryption used in PKZIP was generously supplied by Roger
Schlafly. ---------------------------------

 6.1.1 PKWARE is grateful to Mr. Roger Schlafly for his expert
help and advice in
 contribution towards the fielddevelopment of dataPKWARE's traditional
 encryption.

 6.1.2 PKZIP encrypts the compressed data stream. Encrypted files
 must
 be decrypted before they can be extracted.

 to their original
 form.

 6.1.3 Each encrypted file has an extra 12 bytes stored at the start
 of
 the data area defining the encryption header for that file. The
 encryption header is originally set to random values, and then
 itself encrypted, using three, 32-bit keys. The key values are
 initialized using the supplied encryption password. After each byte
 is encrypted, the keys are then updated using pseudo-random number
 generation techniques in combination with the same CRC-32 algorithm
 used in PKZIP and described elsewhere in this document.

 6.1.4 The following isare the basic steps required to decrypt a file:

 1) Initialize the three 32-bit keys with the password.
 2) Read and decrypt the 12-byte encryption header, further
 initializing the encryption keys.
 3) Read and decrypt the compressed data stream using the
 encryption keys.

Step 6.1 -.5 Initializing the encryption keys

 Key(0) <- 305419896
 Key(1) <- 591751049
 Key(2) <- 878082192

 loop for i <- 0 to length(password)-1
 update_keys(password(i))
 end loop

 Where update_keys() is defined as:

 update_keys(char):
 Key(0) <- crc32(key(0),char)
 Key(1) <- Key(1) + (Key(0) & 000000ffH)
 Key(1) <- Key(1) * 134775813 + 1
 Key(2) <- crc32(key(2),key(1) >> 24)
 end update_keys

 Where crc32(old_crc,char) is a routine that given a CRC value and a
 character, returns an updated CRC value after applying the CRC-32
 algorithm described elsewhere in this document.

Step 2 - 6.1.6 Decrypting the encryption header

 The purpose of this step is to further initialize the encryption
 keys, based on random data, to render a plaintext attack on the
 data ineffective.

 Read the 12-byte encryption header into Buffer, in locations
 Buffer(0) thru Buffer(11).

 loop for i <- 0 to 11
 C <- buffer(i) ^ decrypt_byte()
 update_keys(C)
 buffer(i) <- C
 end loop

 Where decrypt_byte() is defined as:

 unsigned char decrypt_byte()
 local unsigned short temp
 temp <- Key(2) | 2
 decrypt_byte <- (temp * (temp ^ 1)) >> 8
 end decrypt_byte

 After the header is decrypted, the last 1 or 2 bytes in Buffer
 should be the high-order word/byte of the CRC for the file being
 decrypted, stored in Intel low-byte/high-byte order. Versions of
 PKZIP prior to 2.0 used a 2 byte CRC check; a 1 byte CRC check is
 used on versions after 2.0. This can be used to test if the password
 supplied is correct or not.

Step 3 - 6.1.7 Decrypting the compressed data stream
--

 The compressed data stream can be decrypted as follows:

 loop until done
 read a character into C
 Temp <- C ^ decrypt_byte()
 update_keys(temp)
 output Temp
 end loop

XIV.7.0 Strong Encryption Specification (EFS)
--

 7.0.1 Portions of the Strong Encryption technology defined in this
 specification are covered under patents and pending patent applications.
 Refer to the section in this document entitled "Incorporating
 PKWARE Proprietary Technology into Your Product" for more information.

7.1 Strong Encryption Overview

 7.1.1 Version 5.x of this specification introduced support for strong
 encryption algorithms. These algorithms can be used with either
 a password or an X.509v3 digital certificate to encrypt each file.
 This format specification supports either password or certificate
 based encryption to meet the security needs of today, to enable
 interoperability between users within both PKI and non-PKI
 environments, and to ensure interoperability between different
 computing platforms that are running a ZIP program.

 7.1.2 Password based encryption is the most common form of encryption
 people are familiar with. However, inherent weaknesses with
 passwords (e.g. susceptibility to dictionary/brute force attack)
 as well as password management and support issues make certificate
 based encryption a more secure and scalable option. Industry
 efforts and support are defining and moving towards more advanced
 security solutions built around X.509v3 digital certificates and
 Public Key Infrastructures(PKI) because of the greater scalability,
 administrative options, and more robust security over traditional
 password based encryption.

 7.1.3 Most standard encryption algorithms are supported with this
 specification. Reference implementations for many of these
 algorithms are available from either commercial or open source
 distributors. Readily available cryptographic toolkits make
 implementation of the encryption features straight-forward.
 This document is not intended to provide a treatise on data
 encryption principles or theory. Its purpose is to document the
 data structures required for implementing interoperable data
 encryption within the .ZIP format. It is strongly recommended that
 you have a good understanding of data encryption before reading
 further.

 7.1.4 The algorithms introduced in Version 5.0 of this specification
 include:

 RC2 40 bit, 64 bit, and 128 bit
 RC4 40 bit, 64 bit, and 128 bit
 DES
 3DES 112 bit and 168 bit

 Version 5.1 adds support for the following:

 AES 128 bit, 192 bit, and 256 bit

 7.1.5 Version 6.1 introduces encryption data changes to support
 interoperability with SmartCardSmartcard and USB Token certificate storage
 methods which do not support the OAEP strengthening standard.

 7.1.6 Version 6.2 introduces support for encrypting metadata by compressing
 and encrypting the central directory data structure to reduce information
 leakage. Information leakage can occur in legacy ZIP applications
 through exposure of information about a file even though that file is
 stored encrypted. The information exposed consists of file
 characteristics stored within the records and fields defined by this
 specification. This includes data such as a filesfile's name, its original
 size, timestamp and CRC32 value.

 7.1.7 Version 6.3 introduces support for encrypting data using the Blowfish
 and Twofish algorithms. These are symmetric block ciphers developed
 by Bruce Schneier. Blowfish supports using a variable length key from
 32 to 448 bits. Block size is 64 bits. Implementations should use 16
 rounds and the only mode supported within ZIP files is CBC. Twofish
 supports key sizes 128, 192 and 256 bits. Block size is 128 bits.
 Implementations should use 16 rounds and the only mode supported within
 ZIP files is CBC. Information and source code for both Blowfish and
 Twofish algorithms can be found on the internet. Consult with the author
 of these algorithms for information on terms or restrictions on use.

 7.1.8 Central Directory Encryption provides greater protection against
 information leakage by encrypting the Central Directory structure and
 by masking key values that are replicated in the unencrypted Local
 Header. ZIP compatible programs that cannot interpret an encrypted
 Central Directory structure cannot rely on the data in the corresponding
 Local Header for decompression information.

 7.1.9 Extra Field records that may contain information about a file that should
 not be exposed should not be stored in the Local Header and should only
 be written to the Central Directory where they can be encrypted. This
 design currently does not support streaming. Information in the End of
 Central Directory record, the ZIP64Zip64 End of Central Directory Locator,
 and the ZIP64Zip64 End of Central Directory recordrecords are not encrypted. Access
 to view data on files within a ZIP file with an encrypted Central Directory
 requires the appropriate password or private key for decryption prior to
 viewing any files, or any information about the files, in the archive.

 7.1.10 Older ZIP compatible programs not familiar with the Central Directory
 Encryption feature will no longer be able to recognize the Central
 Directory and may assume the ZIP file is corrupt. Programs that
 attempt streaming access using Local Headers will see invalid
 information for each file. Central Directory Encryption need not be
 used for every ZIP file. Its use is recommended for greater security.
 ZIP files not using Central Directory Encryption should operate as
 in the past.

The details of the 7.1.11 This strong encryption specification for certificates
remain under development as design and testing issues are worked out
for the range of algorithms, encryption methods, certificate processing
and cross-platform support necessary to meet the advanced security needs
of .ZIP file users today and in the future.

This feature specification is intended to support basicprovide for
 scalable, cross-platform encryption needs ranging from simple password
 encryption to authenticated public/private key encryption needs
of today, such as password support. However this specification is also
designed to lay the foundation for future advanced security needs.

.

 7.1.12 Encryption provides data confidentiality and privacy. It is
 recommended that you combine X.509 digital signing with encryption
 to add authentication and non-repudiation.

7.2 Single Password Symmetric Encryption Method:

 7.2.1 The Single Password Symmetric Encryption Method using strong

 encryption algorithms operates similarly to the traditional
 PKWARE encryption defined in this format. Additional data
 structures are added to support the processing needs of the
 strong algorithms.

 The Strong Encryption data structures are:

1. 7.2.2 General Purpose Bits - Bits 0 and 6 of the General Purpose bit
 flag in both local and central header records. Both bits set
 indicates strong encryption. Bit 13, when set indicates the Central
 Directory is encrypted and that selected fields in the Local Header
 are masked to hide their actual value.

 7.2.3 Extra Field 0x0017 in central header only.

 Fields to consider in this record are:

 Format - the data format identifier for this record. The only
 7.2.3.1 Format - the data format identifier for this record. The only
 value allowed at this time is the integer value 2.

 7.2.3.2 AlgId - integer identifier of the encryption algorithm from the
 following range

 0x6601 - DES
 0x6602 - RC2 (version needed to extract < 5.2)
 0x6603 - 3DES 168
 0x6609 - 3DES 112
 0x660E - AES 128
 0x660F - AES 192
 0x6610 - AES 256
 0x6702 - RC2 (version needed to extract >= 5.2)
 0x6720 - Blowfish
 0x6721 - Twofish
 0x6801 - RC4
 0xFFFF - Unknown algorithm

 7.2.3.3 Bitlen - Explicit bit length of key

 40
 56
 64
 112
 128
 168
 192
 256

 32 - 448 bits

 7.2.3.4 Flags - Processing flags needed for decryption

 0x0001 - Password is required to decrypt
 0x0002 - Certificates only
 0x0003 - Password or certificate required to decrypt

 Values > 0x0003 reserved for certificate processing

3. 7.2.4 Decryption header record preceding compressed file data.

 -Decryption Header:

 Value Size Description
 ----- ---- -----------
 ----- ---- -----------
 IVSize 2 bytes Size of initialization vector (IV)
 IVData IVSize Initialization vector for this file
 Size 4 bytes Size of remaining decryption header data
 Format 2 bytes Format definition for this record
 AlgID 2 bytes Encryption algorithm identifier
 Bitlen 2 bytes Bit length of encryption key
 Flags 2 bytes Processing flags
 ErdSize 2 bytes Size of Encrypted Random Data
 ErdData ErdSize Encrypted Random Data
 Reserved1 4 bytes Reserved certificate processing data
 Reserved2 (var) Reserved for certificate processing data
 VSize 2 bytes Size of password validation data
 VData VSize-4 Password validation data
 VCRC32 4 bytes Standard ZIP CRC32 of password validation data

 7.2.4.1 IVData - The size of the IV should match the algorithm block size.
 The IVData can be completely random data. If the size of
 the randomly generated data does not match the block size
 it should be complemented with zero's or truncated as
 necessary. If IVSize is 0,then IV = CRC32 + Uncompressed
 File Size (as a 64 bit little-endian, unsigned integer value).

 Format - the data format identifier for this record. The only
 7.2.4.2 Format - the data format identifier for this record. The only
 value allowed at this time is the integer value 3.

 7.2.4.3 AlgId - integer identifier of the encryption algorithm from the
 following range

 0x6601 - DES
 0x6602 - RC2 (version needed to extract < 5.2)
 0x6603 - 3DES 168
 0x6609 - 3DES 112
 0x660E - AES 128
 0x660F - AES 192
 0x6610 - AES 256
 0x6702 - RC2 (version needed to extract >= 5.2)
 0x6720 - Blowfish
 0x6721 - Twofish
 0x6801 - RC4
 0xFFFF - Unknown algorithm

 7.2.4.4 Bitlen - Explicit bit length of key

 40
 56
 64
 112
 128
 168
 192
 256

 32 - 448 bits

 7.2.4.5 Flags - Processing flags needed for decryption

 0x0001 - Password is required to decrypt
 0x0002 - Certificates only
 0x0003 - Password or certificate required to decrypt

 Values > 0x0003 reserved for certificate processing

 7.2.4.6 ErdData - Encrypted random data is used to store random data that
 is used to generate a file
 session key for encrypting
 each file. SHA1 is
 used to calculate hash data used to
 derive keys.
 File session keys are derived from a master
 session
 key generated from the user-supplied password.
 If the Flags field in the decryption header contains
 the value 0x4000, then the ErdData field must be
 decrypted using 3DES.

 If the value 0x4000 is not set,
 then the ErdData field must be decrypted using AlgId.

 7.2.4.7 Reserved1 - Reserved for certificate processing, if value is
 zero, then Reserved2 data is absent. See the explanation
 under the Certificate Processing Method for details on
 this data structure.

 7.2.4.8 Reserved2 - If present, the size of the Reserved2 data structure
 is located by skipping the first 4 bytes of this field
 and using the next 2 bytes as the remaining size. See
 the explanation under the Certificate Processing Method
 for details on this data structure.

 7.2.4.9 VSize - This size value will always include the 4 bytes of the
 VCRC32 data and will be greater than 4 bytes.

 7.2.4.10 VData - Random data for password validation. This data is VSize
 in length and VSize must be a multiple of the encryption
 block size. VCRC32 is a checksum value of VData.
 VData and VCRC32 are stored encrypted and start the
 stream of encrypted data for a file.

 7.2.5 Useful Tips

 7.2.5.1 Strong Encryption is always applied to a file after compression. The
 block oriented algorithms all operate in Cypher Block Chaining (CBC)
 mode. The block size used for AES encryption is 16. All other block
 algorithms use a block size of 8. Two IDs are defined for RC2 to
 account for a discrepancy found in the implementation of the RC2
 algorithm in the cryptographic library on Windows XP SP1 and all
 earlier versions of Windows. It is recommended that zero length files
 not be encrypted, however programs should be prepared to extract them
 if they are found within a ZIP file.

 7.2.5.2 A pseudo-code representation of the encryption process is as follows:

 Password = GetUserPassword()
 MasterSessionKey = DeriveKey(SHA1(Password))
 RD = CryptographicStrengthRandomData()
 For Each File
 IV = CryptographicStrengthRandomData()
 VData = CryptographicStrengthRandomData()
 VCRC32 = CRC32(VData)
 FileSessionKey = DeriveKey(SHA1(IV + RD)
 ErdData = Encrypt(RD,MasterSessionKey,IV)
 Encrypt(VData + VCRC32 + FileData, FileSessionKey,IV)
 Done

 7.2.5.3 The function names and parameter requirements will depend on
 the choice of the cryptographic toolkit selected. Almost any
 toolkit supporting the reference implementations for each
 algorithm can be used. The RSA BSAFE(r), OpenSSL, and Microsoft
4. CryptoAPI libraries are all known to work well.

 7.3 Single Password - Central Directory Encryption

 --

 7.3.1 Central Directory Encryption is achieved within the .ZIP format by
 encrypting the Central Directory structure. This encapsulates the metadata
 most often used for processing .ZIP files. Additional metadata is stored for
 redundancy in the Local Header for each file. The process of concealing
 metadata by encrypting the Central Directory does not protect the data within
 the Local Header. To avoid information leakage from the exposed metadata
 in the Local Header, the fields containing information about a file are masked.

 7.3.2 Local Header:

 Masking replaces the true content of the fields for a file in the Local
 Header with false information. When masked, the Local Header is not
 suitable for streaming access and the options for data recovery of damaged
 archives is reduced. Extra Data fields that may contain confidential
 data should not be stored within the Local Header. The value set into
 the Version needed to extract field should be the correct value needed to
 extract the file without regard to Central Directory Encryption. The fields
 within the Local Header targeted for masking when the Central Directory is
 encrypted are:

 Field Name Mask Value
 ------------------ ---------------------------
 ------------------ ---------------------------
 compression method 0
 last mod file time 0
 last mod file date 0
 crc-32 0
 compressed size 0
 uncompressed size 0
 file name (variable size) Base 16 value from the
 range 1 - FFFFFFFFFFFFFFFF
0xFFFFFFFFFFFFFFFF
 represented as a string whose
 size will be set into the
 file name length field

 The Base 16 value assigned as a masked file name is simply a sequentially
 incremented value for each file starting with 1 for the first file.
 Modifications to a ZIP file may cause different values to be stored for
 each file. For compatibility, the file name field in the Local Header
 should never be left blank. As of Version 6.2 of this specification,
 the Compression Method and Compressed Size fields are not yet masked.

 Fields having a value of 0xFFFF or 0xFFFFFFFF for the ZIP64 format
 should not be masked.

 7.3.3 Encrypting the Central Directory:

 Encryption of the Central Directory does not include encryption of the
 Central Directory Signature data, the ZIP64Zip64 End of Central Directory
 record, the ZIP64Zip64 End of Central Directory Locator, or the End
 of Central Directory record. The ZIP file comment data is never
 encrypted.

 Before encrypting the Central Directory, it may optionally be compressed.
 Compression is not required, but for storage efficiency it is assumed
 this structure will be compressed before encrypting. Similarly, this
 specification supports compressing the Central Directory without
 requiring that it also be encrypted. Early implementations of this
 feature will assume the encryption method applied to files matches the
 encryption applied to the Central Directory.

 Encryption of the Central Directory is done in a manner similar to
 that of file encryption. The encrypted data is preceded by a
 decryption header. The decryption header is known as the Archive
 Decryption Header. The fields of this record are identical to
 the decryption header preceding each encrypted file. The location
 of the Archive Decryption Header is determined by the value in the
 Start of the Central Directory field in the ZIP64Zip64 End of Central
 Directory record. When the Central Directory is encrypted, the
ZIP64 Zip64 End of Central Directory record will always be present.

 The layout of the ZIP64Zip64 End of Central Directory record for all
 versions starting with 6.2 of this specification will follow the
 Version 2 format. The Version 2 format is as follows:

 The first 48 bytes will remain identical to that of leading fixed size fields within the Version 1.
 format for this
 record remain unchanged. The record signature for both Version 1
 and Version 2 will be
 0x06064b50. Immediately following the 48thlast
 byte, which identifies
the end of the field known as the Offset of Start of Central
 Directory With Respect to the Starting Disk Number will begin the
 new fields defining Version 2 of this record.

 7.3.4 New fields for Version 2:

 Note: all fields stored in Intel low-byte/high-byte order.

 Value Size Description
 ----- ---- -----------
 ----- ---- -----------
 Compression Method 2 bytes Method used to compress the
 Central Directory
 Compressed Size 8 bytes Size of the compressed data
 Original Size 8 bytes Original uncompressed size
 AlgId 2 bytes Encryption algorithm ID
 BitLen 2 bytes Encryption key length
 Flags 2 bytes Encryption flags
 HashID 2 bytes Hash algorithm identifier
 Hash Length 2 bytes Length of hash data
 Hash Data (variable) Hash data

 The Compression Method accepts the same range of values as the
 corresponding field in the Central Header.

 The Compressed Size and Original Size values will not include the
 data of the Central Directory Signature which is compressed or
 encrypted.

 The AlgId, BitLen, and Flags fields accept the same range of values
 the corresponding fields within the 0x0017 record.

 Hash ID identifies the algorithm used to hash the Central Directory
 data. This data does not have to be hashed, in which case the
 values for both the HashID and Hash Length will be 0. Possible
 values for HashID are:

 Value Algorithm
 ------ ---------
 ------ ---------
 0x0000 none
 0x0001 CRC32
 0x8003 MD5
 0x8004 SHA1

 0x8007 RIPEMD160
 0x800C SHA256
 0x800D SHA384
 0x800E SHA512

 7.3.5 When the Central Directory data is signed, the same hash algorithm
 used to hash the Central Directory for signing should be used.
 This is recommended for processing efficiency, however, it is
 permissible for any of the above algorithms to be used independent
 of the signing process.

 The Hash Data will contain the hash data for the Central Directory.
 The length of this data will vary depending on the algorithm used.

 The Version Needed to Extract should be set to 62.

 The value for the Total Number of Entries on the Current Disk will
 be 0. These records will no longer support random access when
 encrypting the Central Directory.

 7.3.6 When the Central Directory is compressed and/or encrypted, the
 End of Central Directory record will store the value 0xFFFFFFFF
 as the value for the Total Number of Entries in the Central
 Directory. The value stored in the Total Number of Entries in
 the Central Directory on this Disk field will be 0. The actual
 values will be stored in the equivalent fields of the ZIP64
Zip64
 End of Central Directory record.

 7.3.7 Decrypting and decompressing the Central Directory is accomplished
 in the same manner as decrypting and decompressing a file.

5. Useful Tips

Strong Encryption is always applied to a file after compression. The
block oriented algorithms all operate in Cypher Block Chaining (CBC)
mode. 7.4 The block size used for AES encryption is 16. All other block
algorithms use a block size of 8. Two ID's are defined for RC2 to
account for a discrepancy found in the implementation of the RC2
algorithm in the cryptographic library on Windows XP SP1 and all
earlier versions of Windows.

A pseudo-code representation of the encryption process is as follows:

Password = GetUserPassword()
RD = Random()
ERD = Encrypt(RD,DeriveKey(SHA1(Password)))
For Each File
 IV = Random()
 VData = Random()
 FileSessionKey = DeriveKey(SHA1(IV + RD))
 Encrypt(VData + VCRC32 + FileData,FileSessionKey)
Done

The function names and parameter requirements will depend on
the choice of the cryptographic toolkit selected. Almost any
toolkit supporting the reference implementations for each
algorithm can be used. The RSA BSAFE(r), OpenSSL, and Microsoft
CryptoAPI libraries are all known to work well.

Certificate Processing Method:

 The Certificate Processing Method for ZIP file encryption remains
under development. The information provided here serves as a guide
to those interested in certificate-based data decryption. This
information may be subject to change in future versions of this
specification and is subject to change without notice.

OAEP Processing with Certificate-based Encryption:

Versions of PKZIP available during this development phase of the
certificate processing method may set a value of 61 into the
version needed to extract field for a file. This indicates that

 non-OAEP key wrapping is used. This affects certificate encryption
only, and password encryption functions should not be affected by
this value. This means values of 61 may be found on files encrypted
with certificates only, or on files encrypted with both password
encryption and certificate encryption. Files encrypted with both
methods can safely be decrypted using the password methods documented.

OAEP stands for Optimal Asymmetric Encryption Padding. It is a
strengthening technique used for small encoded items such as decryption
keys. This is commonly applied in cryptographic key-wrapping techniques
and is supported by PKCS #1. Versions 5.0 and 6.0 of this specification
were designed to support OAEP key-wrapping for certificate-based
decryption keys for additional security.

Support for private keys stored on Smart Cards or Tokens introduced
a conflict with this OAEP logic. Most card and token products do
not support the additional strengthening applied to OAEP key-wrapped
data. In order to resolve this conflict, versions 6.1 and above of this
specification will no longer support OAEP when encrypting using
digital certificates.

Certificate Processing Data Fields:

The Certificate Processing Method of this specification defines the
 following additional data fields:

 7.4.1. Certificate Flag Values

 Additional processing flags that can be present in the Flags field of both
 the 0x0017 field of the central directory Extra Field and the Decryption
 header record preceding compressed file data are:

 0x0007 - reserved for future use
 0x000F - reserved for future use
 0x0100 - Indicates non-OAEP key wrapping was used. If this
 this field is set, the version needed to extract must
 be at least 61. This means OAEP key wrapping is not
 used when generating a Master Session Key using
 ErdData.
 0x4000 - ErdData must be decrypted using 3DES-168, otherwise use the
 same algorithm used for encrypting the file contents.
 0x8000 - reserved for future use

 7.4.2. CertData - Extra Field 0x0017 record certificate data structure

 The data structure used to store certificate data within the section
 of the Extra Field defined by the CertData field of the 0x0017
 record are as shown:

 Value Size Description
 ----- ---- -----------
 RCount 4 bytes Number of recipients.
 HashAlg 2 bytes Hash algorithm identifier
 HSize 2 bytes Hash size
 SRList (var) Simple list of recipients hashed public keys

 RCount This defines the number intended recipients whose
 public keys were used for encryption. This identifies
 the number of elements in the SRList.

 HashAlg This defines the hash algorithm used to calculate
 the public key hash of each public key used
 for encryption. This field currently supports
 only the following value for SHA-1

 0x8004 - SHA1

 HSize This defines the size of a hashed public key.

 SRList This is a variable length list of the hashed
 public keys for each intended recipient. Each
 element in this list is HSize. The total size of
 SRList is determined using RCount * HSize.

 7.4.3. Reserved1 - Certificate Decryption Header Reserved1 Data:

 Value Size Description
 ----- ---- -----------
 RCount 4 bytes Number of recipients.

 RCount This defines the number intended recipients whose
 public keys were used for encryption. This defines
 the number of elements in the REList field defined below.

 7.4.4 Reserved2 - Certificate Decryption Header Reserved2 Data Structures:

 Value Size Description
 ----- ---- -----------
 HashAlg 2 bytes Hash algorithm identifier
 HSize 2 bytes Hash size
 REList (var) List of recipient data elements

 HashAlg This defines the hash algorithm used to calculate
 the public key hash of each public key used
 for encryption. This field currently supports
 only the following value for SHA-1

 0x8004 - SHA1

 HSize This defines the size of a hashed public key
 defined in REHData.

 REList This is a variable length of list of recipient data.
 Each element in this list consists of a Recipient
 Element data structure as follows:

 Recipient Element (REList) Data Structure:

 Value Size Description
 ----- ---- -----------
 ----- ---- -----------
 RESize 2 bytes Size of REHData + REKData
 REHData HSize Hash of recipients public key
 REKData (var) Simple key blob

 RESize This defines the size of an individual REList
 element. This value is the combined size of the
 REHData field + REKData field. REHData is defined by
 HSize. REKData is variable and can be calculated
 for each REList element using RESize and HSize.

 REHData Hashed public key for this recipient.

 REKData Simple Key Blob. The format of this data structure
 is identical to that defined in the Microsoft
 CryptoAPI and generated using the CryptExportKey()
 function. The version of the Simple Key Blob
 supported at this time is 0x02 as defined by
 Microsoft.

7.5. Certificate Processing - Central Directory Encryption:

 7.5.1 Central Directory Encryption using Digital Certificates will
 operate in a manner similar to that of Single Password Central
 Directory Encryption. This record will only be present when there
 is data to place into it. Currently, data is placed into this
 record when digital certificates are used for either encrypting
 or signing the files within a ZIP file. When only password
 encryption is used with no certificate encryption or digital
 signing, this record is not currently needed. When present, this
 record will appear before the start of the actual Central Directory
 data structure and will be located immediately after the Archive
 Decryption Header if the Central Directory is encrypted.

 7.5.2 The Archive Extra Data record will be used to store the following
 information. Additional data may be added in future versions.

 Extra Data Fields:

 0x0014 - PKCS#7 Store for X.509 Certificates
 0x0016 - X.509 Certificate ID and Signature for central directory
 0x0019 - PKCS#7 Encryption Recipient Certificate List

 The 0x0014 and 0x0016 Extra Data records that otherwise would be
 located in the first record of the Central Directory for digital
 certificate processing. When encrypting or compressing the Central
 Directory, the 0x0014 and 0x0016 records must be located in the
 Archive Extra Data record and they should not remain in the first
 Central Directory record. The Archive Extra Data record will also
 be used to store the 0x0019 data.

 7.5.3 When present, the size of the Archive Extra Data record will be
 included in the size of the Central Directory. The data of the
 Archive Extra Data record will also be compressed and encrypted
 along with the Central Directory data structure.

7.6. Certificate Processing Differences:

 7.6.1 The Certificate Processing Method of encryption differs from the
 Single Password Symmetric Encryption Method as follows. Instead
 of using a user-defined password to generate a master session key,
 cryptographically random data is used. The key material is then
 wrapped using standard key-wrapping techniques. This key material
 is wrapped using the public key of each recipient that will need
 to decrypt the file using their corresponding private key.

 7.6.2 This specification currently assumes digital certificates will follow
 the X.509 V3 format for 1024 bit and higher RSA format digital
 certificates. Implementation of this Certificate Processing Method
 requires supporting logic for key access and management. This logic
 is outside the scope of this specification.

License Agreement:

The features set forth in this Section XIV (the "Strong7.7 OAEP Processing with Certificate-based Encryption
Specification") are covered by a pending patent application. Portions of
this Strong

 7.7.1 OAEP stands for Optimal Asymmetric Encryption Padding. It is a
 strengthening technique used for small encoded items such as decryption
 keys. This is commonly applied in cryptographic key-wrapping techniques
 and is supported by PKCS #1. Versions 5.0 and 6.0 of this specification
 were designed to support OAEP key-wrapping for certificate-based
 decryption keys for additional security.

 7.7.2 Support for private keys stored on Smartcards or Tokens introduced
 a conflict with this OAEP logic. Most card and token products do
 not support the additional strengthening applied to OAEP key-wrapped
 data. In order to resolve this conflict, versions 6.1 and above of this
 specification will no longer support OAEP when encrypting using
 digital certificates.

 7.7.3 Versions of PKZIP available during initial development of the
 certificate processing method set a value of 61 into the
 version needed to extract field for a file. This indicates that
 non-OAEP key wrapping is used. This affects certificate encryption
 only, and password encryption functions should not be affected by
 this value. This means values of 61 may be found on files encrypted
 with certificates only, or on files encrypted with both password
 encryption and certificate encryption. Files encrypted with both
 methods can safely be decrypted using the password methods documented.

8.0 Splitting and Spanning ZIP files

 8.1 Spanned ZIP files

 8.1.1 Spanning is the process of segmenting a ZIP file across
 multiple removable media. This support has typically only
 been provided for DOS formatted floppy diskettes.

 8.2 Split ZIP files

 8.2.1 File splitting is a newer derivation of spanning.
 Splitting follows the same segmentation process as
 spanning, however, it does not require writing each
 segment to a unique removable medium and instead supports
 placing all pieces onto local or non-removable locations
 such as file systems, local drives, folders, etc.

 8.3 File Naming Differences

 8.3.1 A key difference between spanned and split ZIP files is
 that all pieces of a spanned ZIP file have the same name.
 Since each piece is written to a separate volume, no name
 collisions occur and each segment can reuse the original
 .ZIP file name given to the archive.

 8.3.2 Sequence ordering for DOS spanned archives uses the DOS
 volume label to determine segment numbers. Volume labels
 for each segment are written using the form PKBACK#xxx,
 where xxx is the segment number written as a decimal
 value from 001 - nnn.

 8.3.3 Split ZIP files are typically written to the same location
 and are subject to name collisions if the spanned name
 format is used since each segment will reside on the same
 drive. To avoid name collisions, split archives are named
 as follows.

 Segment 1 = filename.z01
 Segment n-1 = filename.z(n-1)
 Segment n = filename.zip

 8.3.4 The .ZIP extension is used on the last segment to support
 quickly reading the central directory. The segment number
 n should be a decimal value.

 8.4 Spanned Self-extracting ZIP Files

 8.4.1 Spanned ZIP files may be PKSFX Self-extracting ZIP files.
 PKSFX files may also be split, however, in this case
 the first segment must be named filename.exe. The first
 segment of a split PKSFX archive must be large enough to
 include the entire executable program.

 8.5 Capacities and Markers

 8.5.1 Capacities for split archives are as follows:

 Maximum number of segments = 4,294,967,295 - 1
 Maximum .ZIP segment size = 4,294,967,295 bytes
 Minimum segment size = 64K
 Maximum PKSFX segment size = 2,147,483,647 bytes

 8.5.2 Segment sizes may be different however by convention, all
 segment sizes should be the same with the exception of the
 last, which may be smaller. Local and central directory
 header records must never be split across a segment boundary.
 When writing a header record, if the number of bytes remaining
 within a segment is less than the size of the header record,
 end the current segment and write the header at the start
 of the next segment. The central directory may span segment
 boundaries, but no single record in the central directory
 should be split across segments.

 8.5.3 Spanned/Split archives created using PKZIP for Windows
 (V2.50 or greater), PKZIP Command Line (V2.50 or greater),
 or PKZIP Explorer will include a special spanning
 signature as the first 4 bytes of the first segment of
 the archive. This signature (0x08074b50) will be
 followed immediately by the local header signature for
 the first file in the archive.

 8.5.4 A special spanning marker may also appear in spanned/split
 archives if the spanning or splitting process starts but
 only requires one segment. In this case the 0x08074b50
 signature will be replaced with the temporary spanning
 marker signature of 0x30304b50. Split archives can
 only be uncompressed by other versions of PKZIP that
 know how to create a split archive.

 technology are available for use at no charge
under the following terms and conditions.

1. License Grant.

 a. NOTICE TO USER. PLEASE READ THIS ENTIRE SECTION XIV OF THE
 APPNOTE (THE "AGREEMENT") CAREFULLY. BY USING ALL OR ANY PORTION OF THE
 LICENSED TECHNOLOGY, YOU ACCEPT ALL THE TERMS AND CONDITIONS OF THIS
 AGREEMENT AND YOU AGREE THAT THIS AGREEMENT IS ENFORCEABLE LIKE ANY
 WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU. IF YOU DO NOT AGREE, DO NOT
 USE THE LICENSED TECHNOLOGY.

8.5.5 The signature value 0x08074b50 is also used by some
 ZIP implementations as a marker for the Data Descriptor
 record. Conflict in this alternate assignment can be
 avoided by ensuring the position of the signature
 within the ZIP file to determine the use for which it
 is intended.

9.0 b. Definitions.

 i. "Licensed Technology" shall mean that proprietary technology now or
 hereafter owned or controlled by PKWare, Inc. ("PKWARE") or any
 subsidiary or affiliate that covers or is necessary to be used to give
 software the ability to a) extract and decrypt data from zip files
 encrypted using any methods of data encryption and key processing which
 are published in this APPNOTE or any prior APPNOTE, as supplemented by
 any Additional Compatibility Information; and b) encrypt file contents
 as part of .ZIP file processing using only the Single Password Symmetric
 Encryption Method as published in this APPNOTE or any prior APPNOTE, as
 supplemented by any Additional Compatibility Information. For purposes
 of this AGREEMENT, "Additional Compatibility Information" means, with
 regard to any method of data encryption and key processing published in
 this or any prior APPNOTE, any corrections, additions, or clarifications
 to the information in such APPNOTE that are required in order to give
 software the ability to successfully extract and decrypt zip files (or,
 but solely in the case of the Single Password Symmetric Encryption Method,
 to successfully encrypt zip files) in a manner interoperable with the
 actual implementation of such method in any PKWARE product that is
 documented or publicly described by PKWARE as being able to create, or
 to extract and decrypt, zip files using that method.

 ii. "Licensed Products" shall mean any products you produce that
 incorporate the Licensed Technology.

 c. License to Licensed Technology.

 PKWARE hereby grants to you a non-exclusive license to use the Licensed
 Technology for the purpose of manufacturing, offering, selling and using
 Licensed Products, which license shall extend to permit the practice of all
 claims in any patent or patent application (collectively, "Patents") now or
 hereafter owned or controlled by PKWARE in any jurisdiction in the world
 that are infringed by implementation of the Licensed Technology. You have
 the right to sublicense rights you receive under the terms of this AGREEMENT
 for the purpose of allowing sublicensee to manufacture, offer, sell and use
 products that incorporate all or a portion of any of your Licensed Products,
 but if you do, you agree to i) impose the same restrictions on any such
 sublicensee as these terms impose on you and ii) notify the sublicensee,
 by means chosen by you in your unfettered discretion, including a notice on
 your web site, of the terms of this AGREEMENT and make available to each
 sublicensee the full text of this APPNOTE. Further, PKWARE hereby grants to
 you a non-exclusive right to reproduce and distribute, in any form, copies of
 this APPNOTE, without modification. Notwithstanding anything to the contrary
 in this AGREEMENT, you have the right to sublicense the rights, without any of
 the restrictions described above or elsewhere in this AGREEMENT, to use, offer
 to sell and sell Licensed Technology as incorporated in executable object code
 or byte code forms of your Licensed Products. Any sublicense to use the
 Licensed Technology incorporated in a Licensed Product granted by you shall
 survive the termination of this AGREEMENT for any reason. PKWARE warrants that
 this license shall continue to encumber the Licensed Technology regardless of
 changes in ownership of the Licensed Technology.

 d. Proprietary Notices.

 i. With respect to any Licensed Product that is distributed by you either
 in source code form or in the form of an object code library of externally
 callable functions that has been designed by you for incorporation into third
 party products, you agree to include, in the source code, or in the case of
 an object code library, in accompanying documentation, a notice using the
 words "patent pending" until a patent is issued to PKWARE covering any
 portion of the Licensed Technology or PKWARE provides notice, by means
 chosen by PKWARE in its unfettered discretion, that it no longer has any
 patent pending covering any portion of the Licensed Technology. With respect
 to any Licensed Product, upon your becoming aware that at least one patent has
 been granted covering the Licensed Technology, you agree to include in any
 revisions made by you to the documentation (or any source code distributed
 by you) the words "Pat. No.", or "Patent Number" and the patent number or
 numbers of the applicable patent or patents. PKWARE shall, from time to time,
 inform you of the patent number or numbers of the patents covering the
 Licensed Technology, by means chosen by PKWARE in its unfettered discretion,
 including a notice on its web site. It shall be a violation of the terms of
 this AGREEMENT for you to sell Licensed Products without complying with the
 foregoing marking provisions.

 ii. You acknowledge that the terms of this AGREEMENT do not grant you any
 license or other right to use any PKWARE trademark in connection with the sale,
 offering for sale, distribution and delivery of the Licensed Products, or in
 connection with the advertising, promotion and offering of the Licensed Products.
 You acknowledge PKWARE's ownership of the PKZIP trademark and all other marks
 owned by PKWARE.

 e. Covenant of Compliance and Remedies.

 To the extent that you have elected to implement portions of the Licensed
 Technology, you agree to use reasonable diligence to comply with those portions
 of this Section XIV, as modified or supplemented by Additional Compatibility
 Information available to you, describing the portions of the Licensed Technology
 that you have elected to implement. Upon reasonable request by PKWARE, you will
 provide written notice to PKWARE identifying which version of this APPNOTE you
 have relied upon for your implementation of any specified Licensed Product.

 If any substantial non-compliance with the terms of this AGREEMENT is determined
 to exist, you will make such changes as necessary to bring your Licensed Products
 into substantial compliance with the terms of this AGREEMENT. If, within sixty
 days of receipt of notice that a Licensed Product fails to comply with the terms
 of this AGREEMENT, you fail to make such changes as necessary to bring your
 Licensed Products into compliance with the terms of this AGREEMENT, PKWARE may
 terminate your rights under this AGREEMENT. PKWARE does not waive and expressly
 reserves the right to pursue any and all additional remedies that are or may
 become available to PKWARE.

 f. Warranty and Indemnification Regarding Exportation.

 You realize and acknowledge that, as between yourself and PKWARE, you are fully
 responsible for compliance with the import and export laws and regulations of
 any country in or to which you import or export any Licensed Products, and you
 agree to hold PKWARE harmless from any claim of violation of any such import
 or export laws.

 g. Patent Infringement.

 You agree that you will not bring or threaten to bring any action against PKWARE
 for infringement of the claims of any patent owned or controlled by you solely
 as a result of PKWARE's own implementation of the Licensed Technology. As its
 exclusive remedy for your breach of the foregoing agreement, PKWARE reserves
 the right to suspend or terminate all rights granted under the terms of this
 AGREEMENT if you bring or threaten to bring any such action against PKWARE,
 effective immediately upon delivery of written notice of suspension or
 termination to you.

 h. Governing Law.

 The license granted in this AGREEMENT shall be governed by and construed under
 the laws of the State of Wisconsin and the United States.

 i. Revisions and Notice.

 The license granted in this APPNOTE is irrevocable, except as expressly set
 forth above. You agree and understand that any changes which PKWARE determines
 to make to this APPNOTE shall be posted at the same location as the current
 APPNOTE or at a location which will be identified by means chosen by PKWARE,
 including a notice on its web site, and shall be available for adoption by you
 immediately upon such posting, or at such other time as PKWARE shall determine.
 Any changes to the terms of the license published in a subsequent version of
 this AGREEMENT shall be binding upon you only with respect to your products
 that (i) incorporate any Licensed Technology (as defined in the subsequent
 AGREEMENT) that is not otherwise included in the definition of Licensed
 Technology under this AGREEMENT, or (ii) that you expressly identify are to
 be licensed under the subsequent AGREEMENT, which identification shall be by
 written notice with reference to the APPNOTE (version and release date or other
 unique identifier) in which the subsequent AGREEMENT is published. PKWARE
 agrees to identify each change to this APPNOTE by using a unique version and
 release date identifier or other unique identifier.

 j. Warranty by PKWARE

 PKWare, Inc. warrants that it has the right to grant the license hereunder.

XV. Change Process

 9.1 In order for the .ZIP file format to remain a viable definitiontechnology, this
 specification should be considered as open for periodic review and
 revision. Although this format was originally designed with a
 certain level of extensibility, not all changes in technology
 (present or future) were or will be necessarily considered in its
 design.

 9.2 If your application requires new definitions to the
 extensible sections in this format, or if you would like to
 submit new data structures or new capabilities, please forward
 your request to
 zipformat@pkware.com. All submissions will be
 reviewed by the
 ZIP File Specification Committee for possible
 inclusion into
 future versions of this specification.

 9.3 Periodic revisions
 to this specification will be published as
 DRAFT or as FINAL status to ensure interoperability.
We encourage
 comments and feedback that may help improve clarity
or content.

XVI.
10.0 Incorporating PKWARE Proprietary Technology into Your Product
--

 10.1 The Use or Implementation in a product of APPNOTE technological
 components pertaining to either strong encryption or patching requires
 a separate, executed license agreement from PKWARE. Please contact
 PKWARE at zipformat@pkware.com or +1-414-289-9788 with regard to
 acquiring such a license.

 10.2 Additional information regarding PKWARE proprietray technology is
 available at http://www.pkware.com/appnote.

11.0 Acknowledgements

 In addition to the above mentioned contributors to PKZIP and PKUNZIP,
I PKWARE would like to extend special thanks to Robert Mahoney for
 suggesting
 the extension .ZIP for this software.

XVII.12.0 References

 Fiala, Edward R., and Greene, Daniel H., "Data compression with
 finite windows", Communications of the ACM, Volume 32, Number 4,
 April 1989, pages 490-505.

 Held, Gilbert, "Data Compression, Techniques and Applications,
 Hardware and Software Considerations", John Wiley & Sons, 1987.

 Huffman, D.A., "A method for the construction of minimum-redundancy
 codes", Proceedings of the IRE, Volume 40, Number 9, September 1952,
 pages 1098-1101.

 Nelson, Mark, "LZW Data Compression", Dr. Dobbs Journal, Volume 14,
 Number 10, October 1989, pages 29-37.

 Nelson, Mark, "The Data Compression Book", M&T Books, 1991.

 Storer, James A., "Data Compression, Methods and Theory",
 Computer Science Press, 1988

 Welch, Terry, "A Technique for High-Performance Data Compression",
 IEEE Computer, Volume 17, Number 6, June 1984, pages 8-19.

 Ziv, J. and Lempel, A., "A universal algorithm for sequential data
 compression", Communications of the ACM, Volume 30, Number 6,
 June 1987, pages 520-540.

 Ziv, J. and Lempel, A., "Compression of individual sequences via
 variable-rate coding", IEEE Transactions on Information Theory,
 Volume 24, Number 5, September 1978, pages 530-536.

APPENDIX A - AS/400 Extra Field (0x0065) Attribute Definitions
--

A.1 Field Definition Structure:

 a. field length including length 2 bytes
 b. field code 2 bytes
 c. data x bytes

A.2 Field Code Description

 4001 Source type i.e. CLP etc
 4002 The text description of the library
 4003 The text description of the file
 4004 The text description of the member
 4005 x'F0' or 0 is PF-DTA, x'F1' or 1 is PF_SRC
 4007 Database Type Code 1 byte
 4008 Database file and fields definition
 4009 GZIP file type 2 bytes
 400B IFS code page 2 bytes
 400C IFS Creation Time 4 bytes
 400D IFS Access Time 4 bytes
 400E IFS Modification time 4 bytes
 005C Length of the records in the file 2 bytes
 0068 GZIP two words 8 bytes

APPENDIX B - z/OS Extra Field (0x0065) Attribute Definitions
--

B.1 Field Definition Structure:

 a. field length including length 2 bytes
 b. field code 2 bytes
 c. data x bytes

B.2 Field Code Description

 0001 File Type 2 bytes
 0002 NonVSAM Record Format 1 byte
 0003 Reserved
 0004 NonVSAM Block Size 2 bytes Big Endian
 0005 Primary Space Allocation 3 bytes Big Endian
 0006 Secondary Space Allocation 3 bytes Big Endian
 0007 Space Allocation Type1 byte flag
 0008 Modification Date Retired with PKZIP 5.0 +
 0009 Expiration Date Retired with PKZIP 5.0 +
 000A PDS Directory Block Allocation 3 bytes Big Endian binary value
 000B NonVSAM Volume List variable
 000C UNIT Reference Retired with PKZIP 5.0 +
 000D DF/SMS Management Class 8 bytes EBCDIC Text Value
 000E DF/SMS Storage Class 8 bytes EBCDIC Text Value
 000F DF/SMS Data Class 8 bytes EBCDIC Text Value
 0010 PDS/PDSE Member Info. 30 bytes
 0011 VSAM sub-filetype 2 bytes
 0012 VSAM LRECL 13 bytes EBCDIC "(num_avg num_max)"
 0013 VSAM Cluster Name Retired with PKZIP 5.0 +
 0014 VSAM KSDS Key Information 13 bytes EBCDIC "(num_length num_position)"
 0015 VSAM Average LRECL 5 bytes EBCDIC num_value padded with blanks
 0016 VSAM Maximum LRECL 5 bytes EBCDIC num_value padded with blanks
 0017 VSAM KSDS Key Length 5 bytes EBCDIC num_value padded with blanks
 0018 VSAM KSDS Key Position 5 bytes EBCDIC num_value padded with blanks
 0019 VSAM Data Name 1-44 bytes EBCDIC text string
 001A VSAM KSDS Index Name 1-44 bytes EBCDIC text string
 001B VSAM Catalog Name 1-44 bytes EBCDIC text string
 001C VSAM Data Space Type 9 bytes EBCDIC text string
 001D VSAM Data Space Primary 9 bytes EBCDIC num_value left-justified
 001E VSAM Data Space Secondary 9 bytes EBCDIC num_value left-justified
 001F VSAM Data Volume List variable EBCDIC text list of 6-character Volume IDs
 0020 VSAM Data Buffer Space 8 bytes EBCDIC num_value left-justified
 0021 VSAM Data CISIZE 5 bytes EBCDIC num_value left-justified
 0022 VSAM Erase Flag 1 byte flag
 0023 VSAM Free CI % 3 bytes EBCDIC num_value left-justified
 0024 VSAM Free CA % 3 bytes EBCDIC num_value left-justified
 0025 VSAM Index Volume List variable EBCDIC text list of 6-character Volume IDs
 0026 VSAM Ordered Flag 1 byte flag
 0027 VSAM REUSE Flag 1 byte flag
 0028 VSAM SPANNED Flag 1 byte flag
 0029 VSAM Recovery Flag 1 byte flag
 002A VSAM WRITECHK Flag 1 byte flag
 002B VSAM Cluster/Data SHROPTS 3 bytes EBCDIC "n,y"
 002C VSAM Index SHROPTS 3 bytes EBCDIC "n,y"
 002D VSAM Index Space Type 9 bytes EBCDIC text string
 002E VSAM Index Space Primary 9 bytes EBCDIC num_value left-justified
 002F VSAM Index Space Secondary 9 bytes EBCDIC num_value left-justified
 0030 VSAM Index CISIZE 5 bytes EBCDIC num_value left-justified
 0031 VSAM Index IMBED 1 byte flag
 0032 VSAM Index Ordered Flag 1 byte flag
 0033 VSAM REPLICATE Flag 1 byte flag
 0034 VSAM Index REUSE Flag 1 byte flag
 0035 VSAM Index WRITECHK Flag 1 byte flag Retired with PKZIP 5.0 +
 0036 VSAM Owner 8 bytes EBCDIC text string
 0037 VSAM Index Owner 8 bytes EBCDIC text string
 0038 Reserved
 0039 Reserved
 003A Reserved
 003B Reserved
 003C Reserved
 003D Reserved
 003E Reserved
 003F Reserved
 0040 Reserved
 0041 Reserved
 0042 Reserved
 0043 Reserved
 0044 Reserved
 0045 Reserved
 0046 Reserved
 0047 Reserved
 0048 Reserved
 0049 Reserved
 004A Reserved
 004B Reserved
 004C Reserved
 004D Reserved
 004E Reserved
 004F Reserved
 0050 Reserved
 0051 Reserved
 0052 Reserved
 0053 Reserved
 0054 Reserved
 0055 Reserved
 0056 Reserved
 0057 Reserved
 0058 PDS/PDSE Member TTR Info. 6 bytes Big Endian
 0059 PDS 1st LMOD Text TTR 3 bytes Big Endian
 005A PDS LMOD EP Rec # 4 bytes Big Endian
 005B Reserved
 005C Max Length of records 2 bytes Big Endian
 005D PDSE Flag 1 byte flag
 005E Reserved
 005F Reserved
 0060 Reserved
 0061 Reserved
 0062 Reserved
 0063 Reserved
 0064 Reserved
 0065 Last Date Referenced 4 bytes Packed Hex "yyyymmdd"
 0066 Date Created 4 bytes Packed Hex "yyyymmdd"
 0068 GZIP two words 8 bytes
 0071 Extended NOTE Location 12 bytes Big Endian
 0072 Archive device UNIT 6 bytes EBCDIC
 0073 Archive 1st Volume 6 bytes EBCDIC
 0074 Archive 1st VOL File Seq# 2 bytes Binary

APPENDIX C - Zip64 Extensible Data Sector Mappings

 -Z390 Extra Field:

 The following is the general layout of the attributes for the
 ZIP 64 "extra" block for extended tape operations.

 Note: some fields stored in Big Endian format. All text is
 in EBCDIC format unless otherwise specified.

 Value Size Description
 ----- ---- -----------
 (Z390) 0x0065 2 bytes Tag for this "extra" block type
 Size 4 bytes Size for the following data block
 Tag 4 bytes EBCDIC "Z390"
 Length71 2 bytes Big Endian
 Subcode71 2 bytes Enote type code
 FMEPos 1 byte
 Length72 2 bytes Big Endian
 Subcode72 2 bytes Unit type code
 Unit 1 byte Unit
 Length73 2 bytes Big Endian
 Subcode73 2 bytes Volume1 type code
 FirstVol 1 byte Volume
 Length74 2 bytes Big Endian
 Subcode74 2 bytes FirstVol file sequence
 FileSeq 2 bytes Sequence

APPENDIX D - Language Encoding (EFS)

D.1 The ZIP format has historically supported only the original IBM PC character
encoding set, commonly referred to as IBM Code Page 437. This limits storing
file name characters to only those within the original MS-DOS range of values
and does not properly support file names in other character encodings, or
languages. To address this limitation, this specification will support the
following change.

D.2 If general purpose bit 11 is unset, the file name and comment should conform
to the original ZIP character encoding. If general purpose bit 11 is set, the
filename and comment must support The Unicode Standard, Version 4.1.0 or
greater using the character encoding form defined by the UTF-8 storage
specification. The Unicode Standard is published by the The Unicode
Consortium (www.unicode.org). UTF-8 encoded data stored within ZIP files
is expected to not include a byte order mark (BOM).

D.3 Applications may choose to supplement this file name storage through the use
of the 0x0008 Extra Field. Storage for this optional field is currently
undefined, however it will be used to allow storing extended information
on source or target encoding that may further assist applications with file
name, or file content encoding tasks. Please contact PKWARE with any
requirements on how this field should be used.

D.4 The 0x0008 Extra Field storage may be used with either setting for general
purpose bit 11. Examples of the intended usage for this field is to store
whether "modified-UTF-8" (JAVA) is used, or UTF-8-MAC. Similarly, other
commonly used character encoding (code page) designations can be indicated
through this field. Formalized values for use of the 0x0008 record remain
undefined at this time. The definition for the layout of the 0x0008 field
will be published when available. Use of the 0x0008 Extra Field provides
for storing data within a ZIP file in an encoding other than IBM Code
Page 437 or UTF-8.

D.5 General purpose bit 11 will not imply any encoding of file content or
password. Values defining character encoding for file content or
password must be stored within the 0x0008 Extended Language Encoding
Extra Field.

D.6 Ed Gordon of the Info-ZIP group has defined a pair of "extra field" records
that can be used to store UTF-8 file name and file comment fields. These
records can be used for cases when the general purpose bit 11 method
for storing UTF-8 data in the standard file name and comment fields is
not desirable. A common case for this alternate method is if backward
compatibility with older programs is required.

D.7 Definitions for the record structure of these fields are included above
in the section on 3rd party mappings for "extra field" records. These
records are identified by Header ID's 0x6375 (Info-ZIP Unicode Comment
Extra Field) and 0x7075 (Info-ZIP Unicode Path Extra Field).

D.8 The choice of which storage method to use when writing a ZIP file is left
to the implementation. Developers should expect that a ZIP file may
contain either method and should provide support for reading data in
either format. Use of general purpose bit 11 reduces storage requirements
for file name data by not requiring additional "extra field" data for
each file, but can result in older ZIP programs not being able to extract
files. Use of the 0x6375 and 0x7075 records will result in a ZIP file
that should always be readable by older ZIP programs, but requires more
storage per file to write file name and/or file comment fields.
