

ISO/IEC 29500-2:201x

 Office Open XML File Formats — Open Packaging

Conventions

Working DRAFT WD2

2015-08-04

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved iii

Contents

Foreword ... vii

Introduction .. ix

1 Scope ... 1

2 Conformance ... 2

3 Normative References ... 3

4 Terms and Definitions ... 5

5 Notational Conventions ... 11

5.1 Document Conventions ... 11
5.2 Diagram Notes ... 11

6 General Description ... 13

7 Overview ... 14

8 Package Model .. 16

8.1 Introduction ... 16
8.2 Parts ... 16

8.2.1 Introduction .. 16
8.2.2 Part Names .. 17
8.2.3 Media types ... 18
8.2.4 Growth Hint ... 19
8.2.5 XML Usage ... 20

8.3 Part Addressing ... 21
8.3.1 General .. 21
8.3.2 Pack Scheme .. 21
8.3.3 Resolving a Pack IRI to a Resource .. 23
8.3.4 Composing a Pack IRI .. 23
8.3.5 Equivalence ... 24
8.3.6 Base IRIs .. 25

8.4 Resolving Relative References ... 26
8.5 Relationships ... 27

8.5.1 Introduction .. 27
8.5.2 Relationships Part.. 28
8.5.3 Relationship Markup ... 28
8.5.4 Representing Relationships ... 31
8.5.5 Support for Versioning and Extensibility ... 33

9 Physical Package .. 34

9.1 Introduction ... 34
9.2 Physical Mapping Guidelines ... 34

9.2.1 Introduction .. 34
9.2.2 Mapped Components .. 35
9.2.3 Mapping Media Types to Parts ... 35

ISO/IEC 29500-2:201x(E)

iv ©ISO/IEC 201x – All rights reserved

9.2.4 Mapping Part Names to Physical Package Item Names .. 40
9.2.5 Interleaving ... 42

9.3 Mapping to a ZIP Archive .. 44
9.3.1 Introduction .. 44
9.3.2 Mapping Part Data .. 45
9.3.3 ZIP Item Names ... 45
9.3.4 Mapping Part Names to ZIP Item Names .. 45
9.3.5 Mapping ZIP Item Names to Part Names .. 46
9.3.6 ZIP Package Limitations ... 46
9.3.7 Mapping the Media Types Stream .. 47
9.3.8 Mapping the Growth Hint ... 47
9.3.9 Late Detection of ZIP Items Unfit for Streaming Consumption .. 48
9.3.10 ZIP Format Clarifications for Packages .. 48

10 Core Properties .. 49

10.1 Introduction ... 49
10.2 Core Properties Part .. 50
10.3 Location of Core Properties Part ... 52
10.4 Support for Versioning and Extensibility ... 52
10.5 Schema Restrictions for Core Properties .. 52

11 Thumbnails .. 54

12 Digital Signatures ... 55

12.1 Introduction ... 55
12.2 Choosing Content to Sign .. 55
12.3 Digital Signature Parts ... 55

12.3.1 Introduction .. 55
12.3.2 Digital Signature Origin Part .. 56
12.3.3 Digital Signature XML Signature Part .. 57
12.3.4 Digital Signature Certificate Part ... 57
12.3.5 Digital Signature Markup .. 57

12.4 Additional Requirements for Use of XAdES ... 69
12.5 Digital Signature Example .. 69
12.6 Generating Signatures ... 71
12.7 Validating Signatures ... 72

12.7.1 Introduction .. 72
12.7.2 Signature Validation and Streaming Consumption ... 73

12.8 Support for Versioning and Extensibility ... 73
12.8.1 Introduction .. 73
12.8.2 Using Relationship Types .. 73
12.8.3 Markup Compatibility Namespace for Package Digital Signatures ... 74

Annex A (normative) Preprocessing for Generating Relative References ... 75

Annex B (normative) ZIP Appnote.txt Clarifications ... 77

B.1 Introduction ... 77
B.2 Archive File Header Consistency ... 77
B.3 Data Descriptor Signature ... 77
B.4 Table Key ... 77

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved v

Annex C (normative) Schemas - W3C XML Schema .. 88

C.1 Introduction ... 88
C.2 Media Types Stream .. 88
C.3 Core Properties Part .. 89
C.4 Digital Signature XML Signature Markup .. 90
C.5 Relationships Part .. 91

Annex D (informative) Schemas - RELAX NG .. 92

D.1 Introduction ... 92
D.2 Media Types Stream .. 92
D.3 Core Properties Part .. 93
D.4 Digital Signature XML Signature Markup .. 93
D.5 Relationships Part .. 94
D.6 Additional Resources ... 95

D.6.1 XML .. 95
D.6.2 XML Digital Signature Core.. 95

Annex E (normative) Standard Namespaces and Media types ... 96

Annex F (informative) Physical Model Design Considerations ... 98

F.1 Introduction ... 98
F.2 Access Styles .. 99

F.2.1 Introduction .. 99
F.2.2 Direct Access Consumption ... 99
F.2.3 Streaming Consumption .. 99
F.2.4 Streaming Creation ... 99
F.2.5 Simultaneous Creation and Consumption .. 99

F.3 Layout Styles .. 99
F.3.1 Introduction .. 99
F.3.2 Simple Ordering... 100
F.3.3 Interleaved Ordering ... 100

F.4 Communication Styles ... 100
F.4.1 Introduction .. 100
F.4.2 Sequential Delivery ... 100
F.4.3 Random Access.. 100

Annex G (informative) Guidelines for Meeting Conformance .. 101

G.1 Introduction ... 101
G.2 Package Model .. 101
G.3 Physical Packages .. 109
G.4 ZIP Physical Mapping ... 115
G.5 Core Properties .. 119
G.6 Thumbnail .. 120
G.7 Digital Signatures ... 121
12.9 Introduction ... 131
G.8 Pack URI ... 132

Annex H (informative) Differences Between ISO/IEC 29500 and ECMA-376:2006 ... 134

H.1 Introduction ... 134
H.2 XML Elements .. 134

ISO/IEC 29500-2:201x(E)

vi ©ISO/IEC 201x – All rights reserved

H.3 XML Attributes... 134
H.4 XML Enumeration Values .. 134
H.5 XML Simple Types .. 134

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)

form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC

participate in the development of International Standards through technical committees established by the

respective organization to deal with particular fields of technical activity. ISO and IEC technical committees

collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,

in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have

established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29500-2 was prepared by ISO/IEC JTC 1, Information technology, Subcommittee SC 34, Document

description and processing languages.

This fourth edition cancels and replaces the third edition (ISO/IEC 29500-2:2012).

The major changes from the previous edition include:

 Removed the allowance for media type to be an empty string, as this conflicts with the definition of

media type in RFC 2046 and the existing regular expression defined in Annex C.

 xx

The major changes in the third edition include:

 Added new terms byte, id, relationship type, source part, target part, and unique identifier, and removed

the term well-known part.

 Removed subclause §9.2.2, “Fragments”

 Added subclause §C.2, “Data Descriptor Signature”

 Applied changes to resolve numerous Defect Reports

There were no major changes in the second edition.

Commented [rcj1]:

ISO/IEC 29500-2:201x(E)

viii ©ISO/IEC 201x – All rights reserved

ISO/IEC 29500 consists of the following parts, under the general title Information technology — Document

description and processing languages — Office Open XML File Formats:

 Part 1: Fundamentals and Markup Language Reference

 Part 2: Open Packaging Conventions

 Part 3: Markup Compatibility and Extensibility

 Part 4: Transitional Migration Features

Annexes A, B, C, D, and F form a normative part of this Part of ISO/IEC 29500. Annexes E, G, H, and I are for

information only.

This Part of ISO/IEC 29500 includes two annexes (Annex C and Annex D) that refer to data files provided in

electronic form.

The document representation formats defined by this Part are different from the formats defined in the

corresponding Part of ECMA-376:2006. Some of the differences are reflected in schema changes, as shown in

Annex I of this Part.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved ix

Introduction

ISO/IEC 29500 specifies a family of XML schemas, collectively called Office Open XML, which define the XML

vocabularies for word-processing, spreadsheet, and presentation documents, as well as the packaging of

documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and

platforms, fostering interoperability across office productivity applications and line-of-business systems, as well

as to support and strengthen document archival and preservation, all in a way that is fully compatible with the

existing corpus of Microsoft Office documents.

INTERNATIONAL STANDARD ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 1

Information technology — Document description and

processing languages — Office Open XML File Formats

Part 2:

Open Packaging Conventions

1 Scope

This Part of ISO/IEC 29500 defines a set of conventions for packaging one or more interrelated byte stream

(part) as a single resource (package). These conventions are applicable not only to Office Open XML

specifications as described in Parts 1 and 4 of this Standard, but also to other markup specifications. Commented [MM2]: I don't think that we have to mention
digital signatures, properties, or thumbnails.

ISO/IEC 29500-2:201x(E)

2 ©ISO/IEC 201x – All rights reserved

2 Conformance

Each conformance requirement is given a unique ID comprised of a letter (M – MANDATORY; S – SHOULD; O –

OPTIONAL), an identifier for the topic to which it relates, and a unique ID within that topic. (Producers and

consumers might use these IDs to report error conditions.) Mandatory requirements are those stated with the

normative terms “shall”, “shall not”, or any of their normative equivalents. Should requirements are those

stated with the normative terms “should”, “should not”, or any of their normative equivalents. Optional

requirements are those stated with the normative terms “can”, “cannot”, “might”, “might not”, or any of their

normative equivalents.

[Example: Package implementers shall not map logical item name(s) mapped to the Content Types streamMedia

Types stream in a ZIP archive to a part name. [M3.11] end example]

Each Part of this multi-part standard has its own conformance clause, as appropriate. The term conformance

class is used to disambiguate conformance within different Parts of this multi-part standard. This Part of ISO/IEC

29500 has only one conformance class, OPC (that is, Open Packaging Conventions).

A document is of conformance class OPC if it obeys all syntactic constraints specified in this Part of ISO/IEC

29500.

OPC conformance is purely syntactic.

Commented [JH3]: Delete if/when Appendix G references are
removed

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 3

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document

(including any amendments) applies.

American National Standards Institute, Coded Character Set — 7-bit American Standard Code for Information

Interchange, ANSI X3.4, 1986.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and

times.

ISO/IEC 9594-8 | ITU-T Rec. X.509, Information technology — Open Systems Interconnection — The Directory:

Public-key and attribute certificate frameworks.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

ISO/IEC 29500-3, Information technology — Document description and processing languages — Office Open XML

File Formats, Part 3: Markup Compatibility and Extensibility.

Dublin Core Element Set v1.1. http://purl.org/dc/elements/1.1/

Dublin Core Terms Namespace. http://purl.org/dc/terms/

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004.

Namespaces in XML 1.1, W3C Recommendation, 4 February 2004.

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, The Internet Society, N. Freed

and N. Borenstein, 1996, http://www.ietf.org/rfc/rfc2046.txt.

RFC 2616 Hypertext Transfer Protocol — HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Frystyk, J.

Gettys, P. Leach, L. Masinter, and J. Mogul, 1999, http://www.ietf.org/rfc/rfc2616.txt.

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding,

and L. Masinter, 2005, http://www.ietf.org/rfc/rfc3986.txt.

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005,

http://www.ietf.org/rfc/rfc3987.txt.

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005,

http://www.ietf.org/rfc/rfc4234.txt.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc4234.txt

ISO/IEC 29500-2:201x(E)

4 ©ISO/IEC 201x – All rights reserved

RFC 7231 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, The Internet Society, R. Fielding and J.

Reschke, 2014, http://www.ietf.org/rfc/rfc7231.txt.

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html.

W3C NOTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997,

http://www.w3.org/TR/1998/NOTE-datetime-19980827.

XML, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and François Yergeau (editors). Extensible

Markup Language (XML) 1.0, Fourth Edition. World Wide Web Consortium. 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/. [Implementers should be aware that a further correction of

the normative reference to XML to refer to the 5th Edition will be necessary when the related Reference

Specifications to which this International Standard also makes normative reference and which also depend upon

XML, such as XSLT, XML Namespaces and XML Base, are all aligned with the 5th Edition.]

XML Namespaces, Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Namespaces in

XML 1.0 (Third Edition), 8 December 2009. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-xml-

names-20091208/

XML Base, W3C Recommendation, 27 June 2001.

XML Path Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999.

XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004.

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004.

XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.

.ZIP File Format Specification from PKWARE, Inc., version 6.2.0 (2004), as specified in

http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt. [Note: The supported compression

algorithm is inferred from tables C-3 and C-4 in Annex B. end note]

http://www.ietf.org/rfc/rfc7231.txt
http://www.unicode.org/standard/standard.html
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 5

4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply. Other terms are defined where

they appear in italic typeface. Terms explicitly defined in this Part of ISO/IEC 29500 are not to be presumed to

refer implicitly to similar terms defined elsewhere.

The terms base URI and relative reference are used in accordance with RFC 3986. The term media type is used in

accordance with RFC 2046.

4.1

access style

style in which local access or networked access is conducted

4.2

behavior

external appearance or action

4.3

behavior, implementation-defined

behavior, application-defined

unspecified behavior where each implementation shall document that behavior, thereby promoting

predictability and reproducibility within any given implementation

4.4

behavior, unspecified

behavior where this Open Packaging specification imposes no requirements

4.5

byte

sequence of 8 bits treated as a unit

4.6

communication style

style in which package contents are delivered by a producer or received by a consumer

4.7

consumer

software or a device that reads packages through a package implementer

4.8

content type

description of the content stored in a part

Commented [JH4]: Remove unnecessary terms

ISO/IEC 29500-2:201x(E)

6 ©ISO/IEC 201x – All rights reserved

4.9

Content TypeMedia Types stream

specially stream that defines mappings from part names to content typemedia types

4.8

device

hardware, such as a personal computer, printer, or scanner, that performs a single function or set of functions

4.9

format consumer

consumer that consumes packages conforming to a format designer's specification

4.10

format designer

author of a particular file format specification built on this Open Packaging Conventions specification

4.11

format producer

producer that produces packages conforming to a format designer's specification

4.12

growth hint

suggested number of bytes to reserve for a part to grow in-place

4.13

id

a name from an identification scheme

4.14

interleaved ordering

layout style of a physical package where parts are broken into pieces and “mixed-in” with pieces from other

parts

4.15

layout style

style in which the collection of parts in a physical package is laid out

4.16

local access

access architecture in which a pipe carries data directly from a producer to a consumer on a single device

4.17

logical item

either a non-interleaved part or a piece of an interleaved part

Commented [JH5]: Do a full pass over the document to clean
up or remove uses of producer/consumer/implementer/designer.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 7

4.18

networked access

access architecture in which a consumer and the producer communicate over a protocol, such as across a

process boundary, or between a server and a desktop computer

4.19

pack URI

URI scheme that allows URIs to be used as a uniform mechanism for addressing parts within a package

4.20

package

logical entity that holds a collection of parts

4.21

package implementer

software that implements the physical input-output operations to a package according to the requirements and

recommendations of this Open Packaging specification

4.22

package model

package abstraction that holds a collection of parts

4.23

package relationship

relationship whose target is a part and whose source is the package as a whole

4.24

part

stream of bytes with a MIME content typemedia type and associated common properties

4.25

part name

path component of a pack URI

4.26

physical model

description of the capabilities of a particular physical format

4.27

physical package format

specific file format, or other persistence or transport mechanism that can represent all of the capabilities of a

package

ISO/IEC 29500-2:201x(E)

8 ©ISO/IEC 201x – All rights reserved

4.28

piece

portion of a part.

4.29

pipe

communication mechanism that carries data from the producer to the consumer

4.30

producer

software or a device that writes packages through a package implementer

4.31

random access

style of communication between the producer and the consumer of the package

4.32

relationship

connection between a source part and a target part in a package

4.33

relationship type

absolute IRI for identifying a relationship

4.34

relationships part

part containing an XML representation of relationships

4.35

sequential delivery

communication style in which all of the physical bits in the package are delivered in the order they appear in the

package

4.36

signature policy

format-defined policy that specifies what configuration of parts and relationships shall or might be included in a

signature for that format and what additional behaviors that producers and consumers of that format shall

follow when applying or verifying signatures following that format's signature policy

4.37

simple ordering

defined ordering for laying out the parts in a package in which all the bits comprising each part are stored

contiguously

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 9

4.38

simultaneous creation and consumption

style of access between a producer and a consumer in highly pipelined environments where streaming creation

and streaming consumption occur simultaneously

4.39

source part

part from which a connection is established by a relationship

4.40

stream

linearly ordered sequence of bytes

4.41

streaming consumption

access style in which parts of a physical package can be processed by a consumer before all of the bits of the

package have been delivered through the pipe

4.42

streaming creation

production style in which a producer dynamically adds parts to a package after other parts have been added

without modifying those parts

4.43

target part

part to which a connection is established by a relationship

4.44

thumbnail

small image that is a graphical representation of a part or the package as a whole

4.45

unique identifier

a unique name from an identification scheme

4.46

XSD

W3C XML Schema

4.47

ZIP archive

ZIP file as defined in the ZIP file format specification

ISO/IEC 29500-2:201x(E)

10 ©ISO/IEC 201x – All rights reserved

4.48

ZIP item

an atomic set of data in a ZIP archive that becomes a file when the archive is uncompressed

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 11

5 Notational Conventions

5.1 Document Conventions

The following typographical conventions are used in ISO/IEC 29500:

1) The first occurrence of a new term is written in italics. [Example: The text in ISO/IEC 29500 is divided

into normative and informative categories. end example]

2) In each definition of a term in §4 (Terms and Definitions), the term is written in bold. [Example: behavior

— External appearance or action. end example]

3) The tag name of an XML element is written using a distinct style and typeface. [Example: The

bookmarkStart and bookmarkEnd elements specify … end example]

4) The name of an XML attribute is written using a distinct style and typeface. [Example: The dropCap

attribute specifies … end example]

5) The value of an XML attribute is written using a constant-width style. [Example: The attribute value of

auto specifies … end example]

6) The qualified or unqualified name of a simple type, complex type, or base datatype is written using a

distinct style and typeface. [Example: The possible values for this attribute are defined by the

ST_HexColor simple type. end example]

5.2 Diagram Notes

In some cases, markup semantics are described using diagrams. The diagrams place the parent element on the

left, with attributes and child elements to the right. The symbols are described below.

Symbol Description

Required element: This box represents an element that shall appear
exactly once in markup when the parent element is included. The
“+” and “–” symbols on the right of these boxes have no semantic
meaning.

Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

Range indicator: These numbers indicate that the designated
element or choice of elements can appear in markup any number of
times within the range specified.

Attribute group: This box indicates that the enclosed boxes are each
attributes of the parent element. Solid-border boxes are required
attributes; dashed-border boxes are optional attributes.

ISO/IEC 29500-2:201x(E)

12 ©ISO/IEC 201x – All rights reserved

Symbol Description

Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.

Choice symbol: Only one of the element boxes connected to this
symbol shall appear in markup.

Complex Type indicator: The elements within the dashed box are of
the complex type indicated.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 13

6 General Description

This Open Packaging specification is divided into the following subdivisions:

1) Front matter (Clauses 1–6);

2) Overview (Clause 7);

3) Main body (Clauses 8–12);

4) Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes

provide additional information and summarize the information contained in this Open Packaging specification.

The following form the normative part of this Open Packaging specification:

 Introduction

 Clauses 1–6, and 8–12

 Annex A–Annex C

 Annex E

The following form the informative part of this Open Packaging specification:

 Clause 7

 Annex D

 Annex F–Annex H

 All notes

 All examples

Conformance requirements written as requirements for package implementers (e.g., M1.1) are document

conformance requirements.

Except for whole clauses or annexes that are identified as being informative, informative text that is contained

within normative text is indicated in the following ways:

1) [Example: code fragment, possibly with some narrative … end example]

2) [Note: narrative … end note]

3) [Rationale: narrative … end rationale]

4) [Guidance: narrative … end guidance]

ISO/IEC 29500-2:201x(E)

14 ©ISO/IEC 201x – All rights reserved

7 Overview

This clause is informative.

This Open Packaging specification describes an abstract model (§8) and physical format conventions (§9) for the

use of XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content and

resources of a document within a package. The package structure is intended to support the organization of

constituent resources for various applications and categories of content. The specification is written for

developers who are building systems that process package content.It is intended to support the content types

and organization for various applications and is written for developers who are building systems that process

package content.

In addition, this Open Packaging specification defines common services that can be included in a package, such

as Core Properties and Digital Signatures.

This Part of ISO/IEC 29500 specifies a set of conventions used by Office Open XML documents to define the

structure and functionality of a package in terms of a package model and a physical model.

The package model is a package abstraction that holds a collection of parts. The parts are composed, processed,

and persisted according to a set of rules. Parts can have relationships to other parts or external resources, and

the package as a whole can have relationships to parts it contains or to external resources. The package model

specifies how the parts of a package are named and related. Parts have content typeMIME media types and are

uniquely identified using the well-defined naming rules provided in this Part of ISO/IEC 29500.

The physical model defines the mapping of the components of the package model to the features of a specific

physical format, namely a ZIP archive.

This Part of ISO/IEC 29500 also describes certain features that might be supported in a package, including core

properties for package metadata, a thumbnail for graphical representation of a package, and digital signatures

of package contents. Because this Part of ISO/IEC 29500 might evolve, packages are designed to accommodate

extensions and to support compatibility goals in a limited way. The versioning and extensibility mechanisms

described in Part 3 support compatibility between software systems based on different versions of this Part of

ISO/IEC 29500 while allowing package creators to make use of new or proprietary features.

This Part of ISO/IEC 29500 specifies requirements for documents, producers, and consumers. Conformance

requirements are identified throughout the text of this Part of ISO/IEC 29500. A formal conformance statement

is given in §2. An informative summary of requirements relevant to particular classes of developers is given in

Annex G.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 15

A primary goal is to ensure the interoperability of independently created software and hardware systems that

produce or consume package content and use common services. This Open Packaging specification defines the

formal requirements that producers and consumers must satisfy in order to achieve interoperability.

Various XML-based building blocks within a package make use of the conventions described in Part 3 to facilitate

future enhancement and extension of XML markup. That Part must be cited explicitly by any markup

specification that bases its versioning and extensibility strategy on Markup Compatibility elements and

attributes.

End of informative text.

ISO/IEC 29500-2:201x(E)

16 ©ISO/IEC 201x – All rights reserved

8 Package Model

8.1 Introduction

This clause specifies an abstract model for a package. The requirements for mapping these concepts to a

physical format, including specifically to ZIP files, are given in §9.

A package is a container that holds a collection of parts. The purpose of the package is to aggregate constituent

components of a document (or other type of content) into a single object. [Example: A package holding a

document with a picture might contain two parts: an XML markup part representing the document and another

part representing the picture. end example] The package is also capable of storing relationships between parts.

The package provides a convenient way to distribute documents with all of their constituent components, such

as images, fonts, and data. Although this Open Packaging specification defines a single-file package format, the

package model allows for the future definition of other physical package representations. [Example: A package

could be represented physically in a collection of loose files, in a database, or ephemerally in transit over a

network connection. end example]

This Open Packaging specification also defines a URI scheme, the pack URI, that allows URIs to be used as a

uniform mechanism for addressing parts within a package.

8.2 Parts

8.2.1 Introduction

A part is a stream of bytes with the properties listed in Table 8–1. A stream is a linearly ordered sequence of

bytes. Parts are analogous to a file in a file system or to a resource on an HTTP server.

Table 8–1. Part properties

Name Description Required/Optional

Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]

Content
TypeMedia
type

The type of content stored in the part Required. The package
implementer shall require a
content typemedia type and
the format designer shall
specify the content
typemedia type. [M1.2]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 17

Name Description Required/Optional

Growth Hint A suggested number of bytes to reserve for
the part to grow in-place

Optional. The package
implementer might allow a
growth hint to be provided by
a producer. [O1.1]

8.2.2 Part Names

8.2.2.1 General

Each part shall have a name. Part names shall refer to parts within a package.

8.2.2.2 Syntax

A part name shall be a Unicode string that matches the following production rule in the ABNF syntax defined in

RFC 2234, where isegment-nz is defined in RFC 3987

part_name = 1*("/" isegment-nz)

and further satisfies the following constraints.

 No I18N segments shall contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.

 No I18N segments shall contain percent-encoded characters that match the non-terminal iunreserved in

RFC 3987.

 No I18N segments shall contain percent-encoded "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / "="),

":" , or "@" [Drafting note: Where does this come from? Should we drop this? The published Part 2

does not have this restriction.]

 No I18N segments shall end with a dot (“.”) character.

where an I18N segment is a Unicode string that matches the non-terminal isegment-nz.

[Example: The part name “/hello/world/doc.xml” contains three path segments, namely, “hello”, “world”, and

“doc.xml”. The first two path segments represent levels in the logical hierarchy and serve to organize the parts

of the package, whereas the third contains actual content. end example]

[Example: The part name “/é” contains a path segment “é” where é is 'LATIN SMALL LETTER E WITH ACUTE'

(U+00E9). end example]

[Note: Path segments are not explicitly represented as folders in the package model, and no directory of folders

exists in the package model. end note]

A package implementation is not required to support non-ASCII part names, although doing so is recommended.

Drafting Note: We might want to disallow the asterisk (“*”) and colon (“:”) part names. See the last example in

“10.2.5 ZIP Package Limitations”

Drafting note: RFC 3986 allows sub-delims ("!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / 8182"="), ":" , and

"@" to occur in path segments, but they are not unreserved characters. In other words, they are expected to

Commented [m6]: Why?

Commented [rcj7]:

Commented [rcj8]:

ISO/IEC 29500-2:201x(E)

18 ©ISO/IEC 201x – All rights reserved

have special semantics imposed by particular URI schemes. If OPC does not need special semantics for them, we

might want to disallow them.

Drafting note: NTFS disallows "?" , '"' (double quotation mark), "/", "\", "<", ">", "*", " | ", and ":"

Drafting note: FAT disallows ".",'"' (double quotation mark), "/", "\", "[", "]", ":", ";", "|", "=", and ","

8.2.2.3 Part Name Integrity in a Package

[Term

ASCII case-insensitive matching

Comparison of a character sequence as if all ASCII characters in the range 0x41 to 0x5A (A to Z) were mapped to

the corresponding code points in the range 0x61 to 0x7A (a to z).]

Equivalence of part names is determined by ASCII case-insensitive matching. The names of two different parts

within a package shall not be equivalent, and the result of applying Unicode Normalization Form C (NFC) to the

two names should not be equivalent.

For each part name N and string S, let the result of concatenating N, the forward slash and S be denoted

by N[s].A part name N1 is said to be derivable from another part name N2 if, for some string S, N1 is equivalent

to N2[S].

A part name N1 is said to be weakly derivable from another part name N2 if, for some string S, the result of

applying NFC to N1 is equivalent to the result of applying NFC to N2[S].

[Example: If a package contains a part named “/a”, another part in that package must not have “/a” or “/A” in its

name. If a package contains a part named “/segment1/segment2/…/segmentn”, other parts in that package

must not have names such as “/segment1”, “/SEGMENT1”, “/segment1/segment2”, “/segment1/SEGMENT2”,

or “/segment1/segment2/…/segmentn-1”. If a package contains a part named “/Å” where Å is 'ANGSTROM

SIGN' (U+212B), another part in that package should not have in its name “/Å” where Å is 'LATIN CAPITAL

LETTER A WITH RING ABOVE' (U+00C5) because U+212B and U+00C5 are normalized to the same character

sequence. end example]

[Example: Given N[s] equal to “/a/b” where N is “/a” and S is “b”, then “/a/b” is derivable from “/a”. A part

named “/é/a”, where é is 'LATIN SMALL LETTER E' (U+0065) followed by 'COMBINING ACUTE ACCENT' (U+0301)

is weakly derivable from “/é”, where é is 'LATIN SMALL LETTER E WITH ACUTE' (U+00E9). end example]

[Drafting Note: E’ and e’/a ????]

[Note: Some implementations of the directory structure always apply NFC or NFD normalization. end note]

8.2.3 Content TypeMedia types

[Drafting note: The term "content type" has been discussed in the past. In Kyoto, it was quickly agreed that we

should postpone this discussion to future teleconferences since Caroline Arms can participate.]

Commented [rcj9]:

Commented [rcj10]:

Commented [rcj11]:

Commented [rcj12]:

Commented [m13]: ALPHA and pct encoding needs case
insensitive comparison.

Commented [JH14]: Add example for /é == /É/f

Commented [JH15]: Removed allowance for empty string,
which conflicts with RFC 2046 and the OPC regex anyway.

Commented [rcj16]:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 19

This specification uses MIME media types as defined in RFC 2046 to identify the type of content stored in part.

Each part shall have a media type, as defined in RFC 2046, to identify the type of content in that part, consisting

of a top-level media type and a subtype, such as application/xml andwhich may beoptionally qualified by an

optional a set of parameters.

Each part has a content typemedia type, which identifies the type of content stored in that part. Content

typeMedia types define a top-level media type, a subtype, and an optional set of parameters. Package

implementers shall only create and only recognize parts with a content typemedia type; format designers shall

specify a content typemedia type for each part included in the format. Content typeMedia types for package

parts shall fit the definition and syntax for media types as specified in RFC 2616, §3.7. [M1.13] This definition is

as follows:

media-type = type "/" subtype *(";" parameter)

where parameter is expressed as

attribute "=" value

The type, subtype, and parameter attribute names are case-insensitive. Parameter values might be case-

sensitive, depending on the semantics of the parameter attribute name.

The value of the content type is permitted to be the empty string.

Content typeMedia types shall not use linear white space either between the type and subtype or between an

attribute and its value. Content typeMedia types also shall not have leading or trailing white space. Package

implementers shall create only such content typemedia types and shall require such content typemedia types

when retrieving a part from a package; format designers shall specify only such content typemedia types for

inclusion in the format. [M1.14]

The package implementer shall require a content typemedia type that does not include comments, and the

format designer shall specify such a content typemedia type. [M1.15]

Format designers might restrict the usage of parameters for content typemedia types. [O1.2]

Content typeMedia types for package-specific parts are defined in this standard are listed in Annex E.

8.2.4 Growth Hint

[Drafting note: "growth hint" is not represented by XML documents but is merely captured as ZIP fields.]

Sometimes a part is modified after it is placed in a package. Depending on the nature of the modification, the

part might need to grow. For some physical package formats, this could be an expensive operation and could

damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place,

moving as few bytes as possible.

To support these scenarios, a package implementer can associate a growth hint with a part. [O1.1] The growth

hint identifies the number of bytes by which the producer predicts that the part might grow. In a mapping to a

Commented [MM17]: I would like to delete these paragraphs.
First, it repeats what is normatively stated elsewhere. Second,
since this is a conceptual model, the syntax of media types does not
have to be defined. How do people feel?

Commented [rcj18]:

ISO/IEC 29500-2:201x(E)

20 ©ISO/IEC 201x – All rights reserved

particular physical format, this information might be used to reserve space to allow the part to grow in-place.

This number serves as a hint only. The package implementer might ignore the growth hint or adhere only loosely

to it when specifying the physical mapping. [O1.3] If the package implementer specifies a growth hint, it is set

when a part is created, and the package implementer shall not change the growth hint after the part has been

created. [M1.16]

8.2.5 XML Usage

All XML content in parts and streams defined in by this Open Packaging specification shall conform to the

following.: [Note: XML contents defined in OPC are the Content Types streamMedia Types stream, the Core

Properties part, Digital Signature XML Signature parts, and Relationships parts. Other XML documents are not

required to conform to the following.]

1) XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding

declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any

encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon

creation and retrieval of the XML content. [M1.17]

2) The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable

Denial of Service attacks, typically through the use of an internal entity expansion technique. As

mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this

Open Packaging specification. Package implementers shall enforce this requirement upon creation and

retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18]

3) If the XML content contains the Markup Compatibility namespace, as described in Part 3, it shall be

processed by the package implementer to remove Markup Compatibility elements and attributes,

ignorable namespace declarations, and ignored elements and attributes before applying subsequent

validation rules. [M1.19]

4) XML content shall be valid against the corresponding XSD schema defined in this Open Packaging

specification. In particular, the XML content shall not contain elements or attributes drawn from

namespaces that are not explicitly defined in the corresponding XSD unless the XSD allows elements or

attributes drawn from any namespace to be present in particular locations in the XML markup. Package

implementers shall enforce this requirement upon creation and retrieval of the XML content. [M1.20]

5) XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they

are explicitly defined in the XSD schema or by other means described in this Open Packaging

specification. Package implementers shall enforce this requirement upon creation and retrieval of the

XML content. [M1.21]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 21

8.3 Part Addressing

8.3.1 General

This subclause is informative.

This part of ISO/IEC 29500 defines a way to use IRIs (RFC 3987) to reference part resources inside a Error!

eference source not found.package. In particular, Error! Reference source not found. of this part introduces the

scheme "pack" in accordance with the guidelines in RFC 4395.

[Note: Schemes are the prefix in an IRI before the colon. A well-known example is "http". end note]

References from the outside of a package are absolute IRIs of this scheme, while those from the inside are

relative IRIs, which are resolved to absolute IRIs of this scheme.

The following terms are used as they are defined in RFC 3986: scheme, authority, path, segment, reserved

characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query, fragment, and resource.

[Editing note: This should be moved to Clause 2.]

End of informative subclause.

8.3.18.3.2 Pack Scheme

This part of ISO/IEC 29500 defines a specific scheme used to refer to parts in a package: the pack scheme. An IRI

that uses the pack scheme is called a pack IRI.

The pack scheme is a provisional scheme in the IANA-maintained registry of schemes located at . A provisional

registration does not have an expiration date. Further information on provisional registrations can be found at

RFC 4395.

The syntax of pack IRIs is defined by the EBNF (see RFC 2234) as follows:

pack_IRI = "pack://" iauthority ["/" | ipath]

iauthority = *(iunreserved | sub-delims | pct-encoded)

ipath = 1*("/" isegment)

isegment = 1*(ipchar)

sub-delims and pct-encoded are defined in RFC 3986 and iunreserved and ipchar are defined in RFC

3987.

The authority component contains an embedded IRI that points to a package. The authority component shall not

reference a package embedded in another package. The package implementer shall create an embedded IRI that

meets the requirements defined in RFC 3987 for a valid IRI. [M7.1] describes the rules for composing pack IRIs

by combining the IRI of an entire package resource with a part name.

Commented [rcj19]: Everywhere else we use "Introduction"

Commented [JH20]: Fix missing references

Commented [rcj21]:

Commented [rcj22]:

Commented [JH23]: Fix missing references

ISO/IEC 29500-2:201x(E)

22 ©ISO/IEC 201x – All rights reserved

The package implementer shall not create an authority component with an unescaped colon (:) character.

[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of

an unescaped colon character in an authority component. [O7.1]

The optional path component identifies a particular part within the package. The package implementer shall

only create path components that conform to the part naming rules. When the path component is missing, the

resource identified by the pack IRI is the package as a whole. [M7.2]

In order to be able to embed the IRI of the package in the pack IRI, it is necessary either to replace or to percent-

encode occurrences of certain characters in the embedded IRI. For example, forward slashes (“/”) are replaced

with commas (“,”). The rules for these substitutions are described in §Error! Reference source not found..

The optional query component in a pack IRI is ignored when resolving the IRI to a part.

A pack IRI might have a fragment identifier as specified in RFC 3987. If present, this fragment applies to

whatever resource the pack IRI identifies.

[Example:

Example 8–. Using the pack IRI to identify a part

The following IRI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container”

package resource:

pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml

end example]

[Example:

Example 8–. Equivalent pack IRIs

The following pack IRIs are equivalent:

pack://http%3c,,www.openxmlformats.org,my.container

pack://http%3c,,www.openxmlformats.org,my.container/

end example]

[Example:

Example 8–. A pack IRI with percent-encoded characters

The following IRI identifies the “/c/d/bar.xml” part within the

“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container

/c/d/bar.xml

Commented [JH24]: Fix missing references

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 23

end example]

8.3.28.3.3 Resolving a Pack IRI to a Resource

The following is an algorithm for resolving a pack IRI to a resource (either a package or a part):

1) Parse the pack IRI into the potential three components: scheme, authority, path, as well as any fragment

identifier.

2) In the authority component, replace all commas (“,”) with forward slashes (“/”).

3) Un-percent-encode ASCII characters in the resulting authority component.

4) The resultant authority component is the IRI for the package as a whole.

5) If the path component is empty, the pack IRI resolves to the package as a whole and the resolution

process is complete.

6) A non-empty path component shall be a valid part name. If it is not, the pack IRI is invalid.

7) The pack IRI resolves to the part with this part name in the package identified by the authority

component.

[Example:

Example –. Resolving a pack IRI to a resource

Given the pack IRI:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml

The components:

<authority>= http%3c,,www.my.com,packages.aspx%3fmy.package

<path>= /a/b/foo.xml

are converted to the package IRI:

http://www.my.com/packages.aspx?my.package

and the path:

/a/b/foo.xml

Therefore, this IRI refers to a part named “/a/b/foo.xml” in the package at the following IRI:

http://www.my.com/packages.aspx?my.package.

end example]

8.3.38.3.4 Composing a Pack IRI

The following is an algorithm for composing a pack IRI from the IRI of an entire package resource and a part

name.

ISO/IEC 29500-2:201x(E)

24 ©ISO/IEC 201x – All rights reserved

In order to be suitable for creating a pack IRI, the IRI reference of a package resource shall conform to RFC 3986

requirements for absolute IRIs.

To compose a pack IRI from the absolute package IRI and a part name, the following steps shall be performed, in

order:

1) Remove the fragment identifier from the package IRI, if present.

2) Percent-encode all percent signs (“%”), question marks (“?”), at signs (“@”), colons (“:”) and commas

(“,”) in the package IRI.

3) Replace all forward slashes (“/”) with commas (“,”) in the resulting string.

4) Append the resulting string to the string “pack://”.

5) Append a forward slash (“/”) to the resulting string. The constructed string represents a pack IRI with a

blank path component.

6) Using this constructed string as a base IRI and the part name as a relative reference, apply the rules

defined in RFC 3986 for resolving relative references against the base IRI.

The result of this operation is the pack IRI that refers to the resource specified by the part name.

[Example:

Example –. Composing a pack IRI

Given the package IRI:

http://www.my.com/packages.aspx?my.package

and the part name:

/a/foo.xml

The pack IRI is:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/foo.xml

end example]

8.3.48.3.5 Equivalence

The package implementer shall consider pack IRIs equivalent if:

The scheme components are octet-by-octet identical after they are both converted to lowercase; and

The IRIs, decoded as described in from the authority components are equivalent (the equivalency rules by

scheme, as per RFC 3986); and

The path components are equivalent part names as defined in [M7.3]

Commented [rcj25]:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 25

[Note: In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack

IRIs are equivalent without resolving them. end note]

8.3.58.3.6 Base IRIs

This subclause defines a procedure for determining base IRIs for resolving relative references within parts in

packages. [Drafting note: use base IRIs only.]

Note: Base IRIs are used to resolve relative references. More about this, see the next subclause.

Note: Section 5.1 of RFC 3986 provides four ways for establishing base IRIs for resolving relative references. The

procedure in this subclause provides the second way (5.1.2) dedicated to OPC packages.

Note: Base IRIs determined by the procedure in this subclause may be overridden by ways 3 or 4 in RFC 3986.

Case 1: Within a non-relationship part

The base IRI within a non-relationship part shall be the pack IRI created from the IRI of the package and the part

name.

[Example:

Consider a part /a/b/foo.xml in a package available at

http://www.mysite.com/my.package

The base IRI is

pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml

end example]

Case 2: Within a relationship part for some part

The base IRI within a relationship part shall be the pack IRI created from the IRI of the package and the source

part name.

[Example:

Consider a relationship part /a/b/_rels/foo.xml.rels in a package available at

http://www.mysite.com/my.package

The base IRI is

pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml

end example]

Case 3: Within a relationship part /_rels/.rels of the entire package

Commented [rcj26]:

ISO/IEC 29500-2:201x(E)

26 ©ISO/IEC 201x – All rights reserved

The base IRI within a relationship part shall be the pack IRI created from the IRI of the package.

[Example:

Consider a relationship part of a package available at http://www.mysite.com/my.package.

The base IRI is

pack://http%3c,,www.mysite.com,my.package/

end example]

8.4 Resolving Relative References

This subclause is informative.

Relative references in parts are resolved as specified in RFC 3987. With the exception of optional preprocessing

(see), this part of ISO/IEC 29500 introduces no changes to the resolution procedure.

This subclause shows examples of resolving relative references to pack IRIs in relative to two pack IRIs. One is a

pack IRI "pack://http%3c,example.com,foo.opc/a/foo.xml" for a part /a/foo.xml, while the other is a pack IRI

"pack://http%3c,example.com,foo.opc/" for an entire package.

Example 1: Leading slash: /b/bar.xml

1) pack://http%3c,example.com,foo.opc/a/foo.xml

Since this relative reference begins with the slash character, the path component (/a/foo.xml) of the base IRI is

ignored by the algorithm in 5.2.2 of RFC 3986. The scheme and authority of the resulting IRI is the same as those

of the base pack IRI. Thus, the resulting IRI is

pack://http%3c,example.com,foo.opc/b/bar.xml

2) pack://http%3c,example.com,foo.opc/

Likewise, the path component (/) of the base IRI is ignored. The rest is the same.

Example 2: No leading slash: bar.xml

1) pack://http%3c,example.com,foo.opc/a/foo.xml

Since this relative reference does not begin with the slash character, the path component （/a/foo.xml) of the

base IRI and that (bar.xml) of the relative reference are merged. The "merge" routine in 5.2.3 first removes

"foo.xml" from the path component of the base IRI, and emits "/a/bar.xml". Thus, the resulting IRI is a pack IRI

"pack://http%3c,example.com,foo.opc/a/bar.xml".

2) pack://http%3c,example.com,foo.opc/

Commented [rcj27]:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 27

Since the relative reference does not begin with the slash character, the path component （/) of the base IRI

and that (bar.xml) of the relative reference are merged. The "merge" routine emits "/bar.xml".Thus, the

resulting IRI is a pack IRI "pack://http%3c,example.com,foo.opc/bar.xml".

Example 3: Dot segment: ./bar.xml

1) pack://http%3c,example.com,foo.opc/a/foo.xml

As in the previous case, the "merge" routine in 5.2.3 removes "foo.xml" from the path component of the base

IRI, and emits "/a/./bar.xml". But the "remove_dot_segments" routine further removes "./" and emits

"/a/bar.xml". Thus, the resulting IRI is a pack IRI

pack://http%3c,example.com,foo.opc/a/bar.xml

2) pack://http%3c,example.com,foo.opc/

The "merge" routine emits "/./bar.xml" but the "remove_dot_segments" routine removes "./" and emits

"/bar.xml". Thus, the resulting IRI is

pack://http%3c,example.com,foo.opc/bar.xml

Example 4: Dot segment: ../bar.xml

1) pack://http%3c,example.com,foo.opc/a/foo.xml

This case is similar to the previous case, but the "remove_dot_segments" routine removes "a/..". Thus, the

resulting IRI is a pack IRI "pack://http%3c,example.com,foo.opc/bar.xml".

2) pack://http%3c,example.com,foo.opc/

The "merge" routine emits "/../bar.xml", but the "remove_dot_segments" routine replaces ""/../" by "/". Thus,

the resulting IRI is a pack IRI pack://http%3c,example.com,foo.opc/bar.xml".

End of informative subclause.

8.5 Relationships

8.5.1 Introduction

Parts may contain references to other parts in the package and to resources outside of the package. These

references are represented inside the referring part in ways that are specific to the content typemedia type of

the part; that is, in arbitrary markup or an application-defined encoding. This effectively hides the internal and

external links between parts from consumers that do not understand the content typemedia types of the parts

containing such references.

The package introduces a higher-level mechanism to describe references from parts to other internal or external

resources, namely, relationships. Relationships represent the type of connection between a source part and a

ISO/IEC 29500-2:201x(E)

28 ©ISO/IEC 201x – All rights reserved

target resource. They make the connection directly discoverable without looking at the part contents, so they

are independent of content-specific schemas and are quick to resolve.

Relationships have a second important function: providing additional information about parts without modifying

their content. [Note: Some scenarios require information to be attached to an existing part without modifying

that part, for example, because the part is encrypted and cannot be decrypted, or because it is digitally signed

and changing it would invalidate the signature. end note]

8.5.2 Relationships Part

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The

Relationships part is IRI-addressable and it can be opened, read, and deleted. The Relationships part shall not

have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to

create such a relationship and shall treat any such relationship as invalid. [M1.25]

The content typemedia type of the Relationships part is defined in Annex E.

8.5.3 Relationship Markup

8.5.3.1 Introduction

Relationships are represented using Relationship elements nested in a single Relationships element. These

elements are defined in the Relationships namespace, as specified in Annex E. The W3C XML Schema for

relationships is described in Annex C.

After the removal of any extensions using the mechanisms in ISO/IEC 29500-3, a Relationships part shall be a

schema-valid XML document against opc-relationships.xsd.

The package implementer shall require that every Relationship element has an Id attribute, the value of which

is unique within the Relationships part, and that the Id datatype is xsd:ID, the value of which conforms to the

naming restrictions for xsd:ID as described in the W3C Recommendation “XML Schema Part 2: Datatypes.”

[M1.26]

The nature of a Relationship element is identified by the Type attribute. The value of this attribute shall be a

relationship type. By using types patterned after the Internet domain-name space, non-coordinating parties can

safely create non-conflicting relationship types.

Relationship types can be compared to determine whether two Relationship elements are of the same type.

This comparison is conducted in the same way as when comparing URIs that identify XML namespaces: the two

URIs are treated as strings and considered identical if and only if the strings have the same sequence of

characters. The comparison is case-sensitive and no escaping is done or undone.

The Target attribute of the Relationship element holds a URI that points to a target resource. Where the URI is

expressed as a relative reference, it is resolved against the base URI of the Relationships source part. The

xml:base attribute shall not be used to specify a base URI for relationship XML content.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 29

8.5.3.2 Relationships Element

The structure of a Relationships element is shown in the following diagram:

diagram

annotation The root element of the Relationships part.

8.5.3.3 Relationship Element

The structure of a Relationship element is shown in the following diagram:

diagram

attributes Name Type Use Default Fixed Annotation

TargetMode ST_TargetMode optional The package implementer might allow

a TargetMode to be provided by a

producer. [O1.5]

The TargetMode indicates whether

or not the target describes a resource

inside the package or outside the

package. The valid values, in the

Relationships schema, are Internal

and External.

The default value is Internal. When

set to Internal, the Target attribute

shall be a relative reference and that

reference is interpreted relative to

the “parent” part. For package

ISO/IEC 29500-2:201x(E)

30 ©ISO/IEC 201x – All rights reserved

relationships, the package

implementer shall resolve relative

references in the Target attribute

against the pack URI that identifies

the entire package resource. [M1.29]

For more information, see Error!

eference source not found..

When set to External, the Target

attribute can be a relative reference

or a URI. If the Target attribute is a

relative reference, then that

reference is interpreted relative to

the location of the package.

Target xsd:anyURI required The package implementer shall

require the Target attribute to be a

URI reference pointing to a target

resource. The URI reference shall be a

URI or a relative reference. [M1.28]

[Note: The target is a reference to a

part, not a part name, and thus is not

restricted to the syntax requirements

for part names. end note]

Target attribute values are

dependent on the TargetMode

attribute value.

Type xsd:anyURI required The package implementer shall

require the Type attribute to be a URI

that defines the role of the

relationship and the format designer

shall specify such a Type. [M1.27]

Id xsd:ID required The package implementer shall

require a valid XML identifier. [M1.26]

The Id type is xsd:ID and it shall

conform to the naming restrictions

for xsd:ID as specified in the W3C

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 31

Recommendation “XML Schema

Part 2: Datatypes.” The value of the

Id attribute shall be unique within the

Relationships part.

annotation Represents a single relationship.

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship

element. [O1.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a

package implementer shall not resolve the URI to a scope less than an entire part. [M1.32]

8.5.4 Representing Relationships

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one

or more relationships can have an associated Relationships part. This part holds the list of relationships for the

source part. For more information on the Relationships namespace and relationship types, see Annex E.

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given

folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part

is formed by appending “.rels” to the name of the original part. Package relationships are found in the package

relationships part named “/_rels/.rels”.

The package implementer shall name relationship parts according to the special relationships part naming

convention and require that parts with names that conform to this naming convention have the content

typemedia type for a Relationships part. [M1.30]

[Example:

Example 8–3. Sample relationships and associated markup

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital

Signature Origin part is targeted by a package relationship. The connection from the Digital Signature Origin to

the Digital Signature XML Signature part is represented by a relationship.

ISO/IEC 29500-2:201x(E)

32 ©ISO/IEC 201x – All rights reserved

The relationship targeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the

Digital Signature XML Signature part is stored in /_rels/origin.rels.

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the

Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="./Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/signature"/>

</Relationships>

end example]

[Example:

Example 8–4. Targeting resources

Relationships can target resources outside of the package at an absolute location and resources located relative

to the current location of the package. The following Relationships part specifies relationships that connect a

part to pic1.jpg at an external absolute location, and to my_house.jpg at an external location relative to the

location of the package:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 33

 <Relationship

 TargetMode="External"

 Id="A9EFC627517BC"

 Target="http://www.custom.com/images/pic1.jpg"

 Type="http://www.custom.com/external-resource"/>

 <Relationship

 TargetMode="External"

 Id="A5EFC797514BC"

 Target="./images/my_house.jpg"

 Type="http://www.custom.com/external-resource"/>

</Relationships>

end example]

[Example:

Example 8–5. Re-using attribute values

The following Relationships part contains two relationships, each using unique Id values. The relationships share

the same Target, but have different relationship types.

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="./Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/

 relationships/digital-signature/signature"/>

 <Relationship

 Target="./Signature.xml"

 Id="B5F32797CC4B7"

 Type="http://www.custom.com/internal-resource"/>

</Relationships>

end example]

8.5.5 Support for Versioning and Extensibility

Producers might generate relationship markup that uses the versioning and extensibility mechanisms defined in

Part 3 to incorporate elements and attributes drawn from other XML namespaces. [O1.7]

Consumers shall process relationship markup in a manner that conforms to Part 3. [M1.31]

ISO/IEC 29500-2:201x(E)

34 ©ISO/IEC 201x – All rights reserved

9 Physical Package

9.1 Introduction

In contrast to the package model that describes the contents of a package in an abstract way, the physical

package refers to a package that is stored in a particular physical file format. This includes the physical model

and physical mapping considerations. This clause specifies the requirements for mapping the abstract package

model concepts in §8 to a physical format, including specifically to ZIP files as described in §9.3.

The physical model abstractly describes the capabilities of a particular physical format, and how producers and

consumers can use a package implementer to interact with that physical package format. The physical model

includes the access style—the manner in which package input-output is conducted—as well as the

communication style, which describes the method of interaction between producers and consumers across a

communications pipe. The physical model also includes the layout style; that is, how part contents are physically

stored within the package. The layout style either can be simple ordering, where the parts are arranged

contiguously each as an atomic block of data, or interleaved ordering, where the parts are broken into individual

pieces and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a

physical package design is reliant upon the physical model capabilities.

[Note: See Annex F for additional discussion of the physical model. end note]

Physical mappings describe the manner in which the package contents are mapped to the features of that

specific physical format. Details of how package components are mapped are described, as well as common

mapping patterns and mechanisms for storing part content typemedia types. This Open Packaging specification

describes both the specific considerations for physical mapping to a ZIP archive as well as generic physical

mapping considerations applicable to any physical package format.

9.2 Physical Mapping Guidelines

9.2.1 Introduction

Whereas the package model defines a package abstraction, an instance of a package is based on a physical

representation. A physical package format is a particular physical representation of the package contents in a

file.

Many physical package formats have features that partially match the packaging model components. In defining

mappings from the package model to a physical package format, it is advisable to take advantage of any

similarities in capabilities between the package model and the physical package medium while using layers of

mapping to provide additional capabilities not inherently present in the physical package medium. [Example:

Some physical package formats store parts as individual files in a file system, in which case, it is advantageous to

map many part names directly to identical physical file names. end example]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 35

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary

content typemedia types with parts and supporting part interleaving. end example] Package implementers

might use the common mapping solutions defined in this Open Packaging specification. [O2.3]

9.2.2 Mapped Components

The package implementer shall define a physical package format with a mapping for the following required

components package, part name, part content typemedia type, and part contents. [M2.2] [Note: Not all physical

package formats support the part-growth hint. end note]

Table 9–1. Mapped components

Name Description Required/Optional

Package URI-addressable resource that identifies a
package as a whole unit

Required. The package implementer shall
provide a physical mapping for the
package. [M2.2]

Part name Names a part Required. The package implementer shall
provide a physical mapping for each
part’s name. [M2.2]

Part -content
typemedia type

Identifies the kind of content stored in the
part

Required. The package implementer shall
provide a physical mapping for each
part’s content typemedia type. [M2.2]

Part contents Stores the actual content of the part Required. The package implementer shall
provide a physical mapping for each
part’s contents. [M2.2]

Part-growth hint Number of additional bytes to reserve for
possible growth of the part

Optional. The package implementer
might provide a physical mapping for a
growth hint that might be specified by a
producer. [O2.2]

9.2.3 Mapping Part Content TypeMedia tTypes to Parts

9.2.3.1 Introduction

Methods for mapping part -content typemedia types to a physical format are described below.

9.2.3.29.2.3.1 Identifying the Part Content TypeMedia typeIntroduction

The package implementer shall define a format mapping with a mechanism for associating content typemedia

types with parts. [M2.3]

Some physical package formats have a native mechanism for associating media types with partsrepresenting

content typemedia types. [Example: The content cContent-type Type fieldheader in the header of a MIME entity

associates a media type with that MIME entity. end example] For such packages, the package implementer

should use the native mechanism to map the part content typemedia types for a to parts. [S2.1]

ISO/IEC 29500-2:201x(E)

36 ©ISO/IEC 201x – All rights reserved

For all other physical package formats, the package implementer should include a specially named an XML

stream , known as the Media Types stream, in the package, .called the Content Media Types stream. [S2.2] The

Content Types streamMedia Types stream shall not be mapped to a part by the package implementer. [M2.1]

This stream is therefore not URI-addressable. However, it can be interleaved in the physical package using the

same mechanisms used for interleaving parts.

9.2.3.39.2.3.2 Content TypeMedia Types Stream Markup

9.2.3.2.1 Media Types stream markupIntroduction

The content of the Media Types stream shall conform to the following markup specification.

The Content TypeMedia Types stream identifies the content typemedia type for each package part. The Content

TypeMedia Types stream contains XML with a top-level Types element, and one or more Default and Override

child elements. Default elements define default mappings from the extensions of part names to content

typemedia types. Override elements are used to specify content typemedia types on parts that are not covered

by, or are not consistent with, the default mappings. Package producers can use pre-defined Default elements

to reduce the number of Override elements on a part, but are not required to do so. [O2.4]

For all parts of the package other than relationships parts (§8.5.2) and the Content Types part itself, the Content

TypeMedia Types stream shall specify either:

 One matching Default element, or

 One matching Override element, or

 Both a matching Default element and a matching Override element, in which case, the Override

element takes precedence. [M2.4]

The package implementer shall require that there not be more than one Default element for any given

extension, and there not be more than one Override element for any given part name. [M2.5]

The order of Default and Override elements in the Content TypeMedia Types stream is not significant.

If the package is intended for streaming consumption:

 The package implementer should not allow Default elements; consequently, there should be one

Override element for each part in the package.

 The format producer should write the Override elements to the package, so they appear before the part

to which they correspond, or in close proximity to the part to which they correspond.

[S2.3]

The package implementer can define Default content typemedia type mappings even though no parts use them.

[O2.5]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 37

9.2.3.3.19.2.3.2.2 Types Element

The structure of a Types element is shown in the following diagram:

diagram

annotation The root element of the Content Types streamMedia Types stream.

9.2.3.3.29.2.3.2.3 Default Element

The structure of a Default element is shown in the following diagram:

diagram

attributes Name Type Use Default Fixed Annotation

Extension ST_Extension required A part-name extension. A Default

element matches any part whose

name ends with a period (“.”)

followed by the value of this attribute.

The package implementer shall

require a non-empty extension in a

Default element. [M2.6]

ContentType ST_ContentType required A content typemedia type specified

using the syntax as defined in RFC

26167231 §3.1.1.1. Indicates the

content typemedia type of any

matching parts (unless overridden).

The package implementer shall

require a content typemedia type in a

Default element and the format

designer shall specify the content

ISO/IEC 29500-2:201x(E)

38 ©ISO/IEC 201x – All rights reserved

typemedia type. [M2.6]

annotation Defines default mappings from the extensions of part names to content typemedia

types.

9.2.3.3.39.2.3.2.4 Override Element

The structure of an Override element is shown in the following diagram:

diagram

attributes Name Type Use Default Fixed Annotation

ContentType ST_ContentType required A content typemedia type specified

using the syntax as defined in RFC

26167231 §3.1.1.1. Indicates the

content typemedia type of the

matching part referenced by the

PartName attribute. The package

implementer shall require a content

typemedia type and the format

designer shall specify the content

typemedia type in an Override

element. [M2.7]

PartName xs:anyURI required A part name (§8.2.2). An Override

element matches the part whose

name is equal to the value of this

attribute. The package implementer

shall require a part name. [M2.7]

annotation Specifies content typemedia types on parts that are not covered by, or are not

consistent with, the default mappings.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 39

9.2.3.3.49.2.3.2.5 Content TypeMedia Types Stream Markup Example

[Example:

Example 9–6. Content TypeMedia Types stream markup

<Types

 xmlns="http://schemas.openxmlformats.org/package/2006/content-types">

 <Default Extension="txt" ContentType="text/plain" />

 <Default Extension="jpeg" ContentType="image/jpeg" />

 <Default Extension="picture" ContentType="image/gif" />

 <Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The Types element is not a container for generic types, but specifically for content typemedia types to be used

within the package.

The following is a sample list of parts and their corresponding content typemedia types as defined by the

Content Types streamMedia Types stream markup above.

Part name Content
typeMedia

type

/a/b/sample1.txt text/plain

/a/b/sample2.jpg image/jpeg

/a/b/sample3.picture image/gif

/a/b/sample4.picture image/jpeg

end example]

9.2.3.49.2.3.3 Setting the a Content TypePart Media Type of a Partin the Media Types Stream

When adding a new part to a package, the package implementer shall ensure that a content typemedia type for

that part is specified in the Content Types streamMedia Types stream; the package implementer shall perform

the following steps to do so [M2.8]:

1) Get the extension from the part name by taking the substring to the right of the rightmost occurrence of

the dot character (“.”) from the rightmost segment.

2) If a part name has no extension, a corresponding Override element shall be added to the Content Types

streamMedia Types stream.

3) Compare the resulting extension with the values specified for the Extension attributes of the Default

elements in the Content Types streamMedia Types stream. The comparison shall be case-insensitive

ASCII.

4) If there is a Default element with a matching Extension attribute, then the content typemedia type of

the new part shall be compared with the value of the ContentType attribute. The comparison might be

ISO/IEC 29500-2:201x(E)

40 ©ISO/IEC 201x – All rights reserved

case-sensitive and include every character regardless of the role it plays in the content-type grammar of

RFC 26167231, or it might follow the grammar of RFC 26167231.

1) If the content typemedia types match, no further action is required.

2) If the content typemedia types do not match, a new Override element shall be added to the

Content Types streamMedia Types stream.

5) If there is no Default element with a matching Extension attribute, a new Default element or Override

element shall be added to the Content Types streamMedia Types stream.

9.2.3.59.2.3.4 Getting Determining the Content Typea Part Media tType of a Partfrom the Media

Types Stream

To get the content typemedia type of a part, the package implementer shall perform the following steps [M2.9]:

1) Compare the part name with the values specified for the PartName attribute of the Override elements.

The comparison shall be case-insensitive ASCII.

2) If there is an Override element with a matching PartName attribute, return the value of its

ContentType attribute. No further action is required.

3) If there is no Override element with a matching PartName attribute, then

1) Get the extension from the part name by taking the substring to the right of the rightmost

occurrence of the dot character (“.”) from the rightmost segment.

2) Check the Default elements of the Content Types streamMedia Types stream, comparing the

extension with the value of the Extension attribute. The comparison shall be case-insensitive

ASCII.

4) If there is a Default element with a matching Extension attribute, return the value of its ContentType

attribute. No further action is required.

5) If neither Override nor Default elements with matching attributes are found for the specified part

name, the implementation shall not map this part name to a part.

9.2.3.69.2.3.5 Support for Versioning and Extensibility

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 3 to

incorporate elements and attributes drawn from other XML-namespaces into the Content Types streamMedia

Types stream markup. [M2.10]

9.2.4 Mapping Part Names to Physical Package Item Names

9.2.4.1 Introduction

The mapping of part names to the names of items in the physical package uses an intermediate logical item

name abstraction. This logical item name abstraction allows package implementers to manipulate physical data

items consistently regardless of whether those data items can be mapped to parts or not or whether the

package is laid out with simple ordering or interleaved ordering. See §9.2.5 for interleaving details.

Commented [JH28]: Should this be changed?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 41

[Example:

Figure 9–1 illustrates the relationship between part names, logical item names, and physical package item

names.

Figure 9–1. Part names and logical item names

end example]

9.2.4.2 Logical Item Names

Logical item names have the following syntax:

LogicalItemName = PrefixName [SuffixName]

PrefixName = *AChar

AChar = %x20-7E

SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber = "0" | NonZeroDigit [1*Digit]

Digit = "0" | NonZeroDigit

NonZeroDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

[Note: Piece numbers identify the individual pieces of an interleaved part. end note]

The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12]

The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13]

Logical item names are considered equivalent if their prefix names and suffix names are equivalent. The package

implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package

implementer shall not allow packages that contain logical items with equivalent prefix names and with equal

piece numbers, where piece numbers are treated as integer decimal values. [M2.15]

Commented [JH29]: Remove [ContentTypes].xml box

ISO/IEC 29500-2:201x(E)

42 ©ISO/IEC 201x – All rights reserved

Logical item names that use suffix names form a complete sequence if and only if:

1) The prefix names of all logical item names in the sequence are equivalent, and

2) The suffix names of the sequence start with “/[0].piece” and end with “/[n].last.piece” and include a

piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted

as decimal integer values.

9.2.4.3 Mapping Part Names to Logical Item Names

Non-interleaved part names are mapped to logical item names that have an equivalent prefix name and no

suffix name.

Interleaved part names are mapped to the complete sequence of logical item names with an equivalent prefix

name.

[Note: Prefix names mapped to part names correspond to the part names grammar (§8.2.2). In particular, prefix

names can hold percent-encoded characters. For example, a logical name of “%C3%B1.ext” results in a ZIP item

name of “%C3%B1.ext”, not “ñ.ext” (interpreted as a 2-byte UTF-8 sequence). end note]

9.2.4.4 Mapping Logical Item Names and Physical Package Item Names

The mapping of logical item names and physical package item names is specific to the particular physical

package.

9.2.4.5 Mapping Logical Item Names to Part Names

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name, provided

that the prefix name conforms to the part name syntax.

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the

logical item name having the suffix name “/[0].piece”, provided that the prefix name conforms to the part name

syntax.

The package implementer might allow a package that contains logical item names and complete sequences of

logical item names that cannot be mapped to a part name because the logical item name does not follow the

part naming grammar or the logical item does not have an associated content typemedia type. [O2.7] The

package implementer shall not map logical items to parts if the logical item names violate the part naming rules.

[M2.16]

The package implementer shall consider naming collisions within the set of part names mapped from logical

item names to be an error. [M2.17]

9.2.5 Interleaving

Not all physical packages natively support interleaving of the data streams of parts. The package implementer

should use the mechanism described in this Open Packaging specification to allow interleaving when mapping to

the physical package for layout scenarios that support streaming consumption. [S2.4]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 43

The interleaving mechanism breaks the data stream of a part into pieces, which can be interleaved with pieces

of other parts or with whole parts. Pieces are named using a unique mapping from the part name, defined in

§9.2.4. This enables a consumer to join the pieces together in their original order, forming the data stream of

the part.

The individual pieces of an interleaved part exist only in the physical package and are not addressable in the

packaging model. A piece might be empty.

An individual part shall be stored either in an interleaved or non-interleaved fashion. The package implementer

shall not mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifies

whether that format might use interleaving. [O2.1]

The grammar for deriving piece names from a given part name is defined by the logical item name grammar as

defined in §9.2.4.2. A suffix name is mandatory.

The package implementer should store pieces in their natural order for optimal efficiency. [S2.5] The package

implementer might create a physical package containing interleaved parts and non-interleaved parts. [O2.6]

[Example:

Example 9–7. ZIP archive contents

A ZIP archive might contain the following item names mapped to part pieces and whole parts:

spine.xml/[0].piece

pages/page0.xml

spine.xml/[1].piece

pages/page1.xml

spine.xml/[2].last.piece

pages/page2.xml

end example]

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in

the following example.

[Example:

Example 9–8. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an

image part (images/picture.jpg) referring to an image that appears on the page.

ISO/IEC 29500-2:201x(E)

44 ©ISO/IEC 201x – All rights reserved

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The

figure below illustrates this scenario. The consumer is unable to display the image until it has received all of the

page part and the image part. In some circumstances, such as small packages on a high-speed network, this

might be acceptable. In others, having to read through all of markup/page.xml to get to the image results in

unacceptable performance or places unreasonable memory demands on the consumer’s system.

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the

image part immediately following the reference to the image. This allows the consumer to begin processing the

image as soon as it encounters the reference.

end example]

9.3 Mapping to a ZIP Archive

9.3.1 Introduction

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open

Packaging specification might provide additional mappings.

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification

related to encryption, decryption, or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become

files when the archive is unzipped. When users unzip a ZIP-based package, they see a set of files and folders that

reflects the parts in the package and their hierarchical naming structure. end note]

Table 9–2, Package model components and their physical representations, shows the various components of the

package model and their corresponding physical representation in a ZIP archive.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 45

Table 9–2. Package model components and their physical representations

Package model
component

Physical representation

Package ZIP archive file

Part ZIP item

Part name Stored in item header (and ZIP central directory as appropriate).
See §9.3.4 for conversion rules.

Part content media
type

ZIP item(s) containing XML that identifies the content types for each part
according to the patternthe Media Types stream described in §9.2.3.1.
The ZIP item name(s) have the prefix_name “/[Content_Types].xml”. See
§9.3.79.3.7 for details about the ZIP item name.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §9.3.8 for a detailed description of the data structure.

9.3.2 Mapping Part Data

In a ZIP archive, the data associated with a part is represented as one or more items.

A package implementer shall store a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a

package implementer shall represent a part as one or more pieces, using the method described in §9.2.5.

[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its

constituent pieces. Each piece is stored within a ZIP archive as a single ZIP item.

In the ZIP archive, the chunk of bits that represents an item is stored contiguously. A package implementer

might intentionally order the sequence of ZIP items in the archive to enable an efficient organization of the part

data in order to achieve correct and optimal interleaving. [O3.1]

9.3.3 ZIP Item Names

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform

to ZIP archive-file name grammar. [M3.2] Package implementers shall create item names that are unique within

a given archive. [M3.3]

9.3.4 Mapping Part Names to ZIP Item Names

To map part names to ZIP item names the package implementer shall perform, in order, the following steps

[M3.4]:

1) Convert the part name to a logical item name or, in the case of interleaved parts, to a complete

sequence of logical item names.

2) Remove the leading forward slash (“/”) from the logical item name or, in the case of interleaved parts,

from each of the logical item names within the complete sequence.

The package implementer shall not map a logical item name or complete sequence of logical item names sharing

a common prefix to a part name if the logical item prefix has no corresponding content typemedia type. [M3.5]

ISO/IEC 29500-2:201x(E)

46 ©ISO/IEC 201x – All rights reserved

9.3.5 Mapping ZIP Item Names to Part Names

To map ZIP item names to part names, the package implementer shall perform, in order, the following steps

[M3.6]:

1) Map the ZIP item names to logical item names by adding a forward slash (“/”) to each of the ZIP item

names.

2) Map the obtained logical item names to part names. For more information, see §9.2.4.5.

9.3.6 ZIP Package Limitations

The package implementer shall map all ZIP items to parts except MS-DOS ZIP items, as defined in the ZIP

specification, that are not MS-DOS files. [M3.7]

[Note: The ZIP specification specifies that ZIP items recognized as MS-DOS files are those with a “version made

by” field and an “external file attributes” field in the “file header” record in the central directory that have a

value of 0. end note]

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item

name, Extra field, and Comment fields. [M3.8] Accordingly, part names stored in ZIP archives are limited to

65,535 characters, subtracting the size of the Extra and Comment fields.

Package implementers should restrict part naming to accommodate file system limitations when naming parts

to be stored as ZIP items. [S3.1]

[Example:

Examples of these limitations are:

 On MS Windows file systems, the asterisk (“*”) and colon (“:”) are not supported, so parts named with

this character do not unzip successfully.

 On MS Windows file systems, many programs can handle only file names that are less than 256

characters including the full path; parts with longer names might not behave properly once unzipped.

end example]

ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers

shall enforce this restriction. [M3.9]

The compression algorithm supported is DEFLATE, as described in the .ZIP specification. The package

implementer shall not use any compression algorithm other than DEFLATE.

9.3.7 Mapping Part the Content TypeMedia Types Stream

In ZIP archives, the Media Types stream shall be stored in an item with the name prefix name “

/[Content_Types].xml” or, in the interleaved case, in the complete sequence of logical items with that name

prefix name.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 47

Part content typemedia types are used for associating content typemedia types with part data within a package.

In ZIP archives, content typemedia type information is stored using the common mapping pattern that stores

this information in a single XML stream as follows:

 Package implementers shall store content typemedia type data in an item(s) mapped to the logical item

name with the prefix _name equal to “/[Content_Types].xml” or in the interleaved case to the complete

sequence of logical item names with that prefix_name. [M3.10]

Package implementers shall not map logical item name(s) mapped to the Content Types streamMedia Types

stream in a ZIP archive to a part name. [M3.11] [Note: Bracket characters "[" and "]" were chosen for the

Content Types streamMedia Types stream name specifically because these characters violate the part naming

grammar, thus reinforcing this requirement. end note]

9.3.8 Mapping the Growth Hint

In a ZIP archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grow in-

place. The padding is stored in the Extra field, as defined in the ZIP file format specification. If a growth hint is

used for an interleaved part, the package implementer should store the Extra field containing the growth hint

padding with the item that represents the first piece of the part. [S3.2]

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 9–3, Structure of the Extra

field for growth hints below.

Table 9–3. Structure of the Extra field for growth hints

Field Size Value

Header ID 2 bytes A220

Length of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signature (for
verification)

2 bytes A028

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding
Length]

Should be filled with NULL characters

9.3.9 Late Detection of ZIP Items Unfit for Streaming Consumption

Several substantial conditions that represent a package unfit for streaming consumption might be detected mid-

processing by a streaming package implementer. These include:

 A duplicate ZIP item name is detected the moment the second ZIP item with that name is encountered.

Duplicate ZIP item names are not allowed. [M3.3]

Commented [MM30]: I would like to delete these paragraphs.
I think that they repeat what is already stated in the definition of
the Media Types stream.

ISO/IEC 29500-2:201x(E)

48 ©ISO/IEC 201x – All rights reserved

 In interleaved packages, an incomplete sequence of ZIP items is detected when the last ZIP item is

received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items cannot be

mapped to a part and is therefore invalid. [M2.16]

 An inconsistency between the local ZIP item headers and the ZIP central directory file headers is

detected at the end of package consumption, when the central directory is processed.

 A ZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected at the

end of package consumption, when the central directory is processed. Only a ZIP item that is a file shall

be mapped to a part in a package.

When any of these conditions are detected, the streaming package implementer shall generate an error,

regardless of any processing that has already taken place. Package implementers shall not generate a package

containing any of these conditions when generating a package intended for streaming consumption. [M3.13]

9.3.10 ZIP Format Clarifications for Packages

The ZIP format includes a number of features that packages do not support. Some ZIP features are clarified in

the package context. See Annex B for package-specific ZIP information.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 49

10 Core Properties

10.1 Introduction

Core properties enable users to get and set well-known and common sets of property metadata within

packages. The core properties and the Standard that describes them are shown in Table 10–1, “Core

properties”. The namespaces for the properties in this table in the Open Packaging Conventions domain are

defined in Annex E.

Core property elements are non-repeatable. They can be empty or omitted. The Core Properties Part can be

omitted if no core properties are present.

Table 10–1. Core properties

Property Domain Description

category Open
Packaging
Conventions

A categorization of the content of this package. [Example: Example
values for this property might include Resume, Letter, Financial
Forecast, Proposal, and Technical Presentation. This value might be
used by an application's user interface to facilitate navigation of a large
set of documents. end example]

contentStatus Open
Packaging
Conventions

The status of the content. [Example: Values might include “Draft”,
“Reviewed”, and “Final”. end example]

created Dublin Core Date of creation of the resource

creator Dublin Core An entity primarily responsible for making the content of the resource

description Dublin Core An explanation of the content of the resource. [Example: Values might
include an abstract, table of contents, reference to a graphical
representation of content, and a free-text account of the content.
end example]

identifier Dublin Core An unambiguous reference to the resource within a given context

ISO/IEC 29500-2:201x(E)

50 ©ISO/IEC 201x – All rights reserved

Property Domain Description

keywords Open
Packaging
Conventions

A delimited set of keywords to support searching and indexing. This is
typically a list of terms that are not available elsewhere in the
properties.

The definition of this element uniquely allows for:

 Use of the xml:lang attribute to identify languages

 A mixed content model, such that keywords can be flagged
individually

[Example: The following instance of the keywords element has
keywords in English (Canada), English (U.S.), and French (France):

<keywords xml:lang="en-US">
 color
 <value xml:lang="en-CA">colour</value>
 <value xml:lang="fr-FR">couleur</value>
</keywords>

end example]

language Dublin Core The language of the intellectual content of the resource. [Note: IETF
RFC 3066 provides guidance on encoding to represent languages. end
note]

lastModifiedBy Open
Packaging
Conventions

The user who performed the last modification. The identification is
environment-specific. [Example: A name, email address, or employee
ID. end example] It is recommended that this value be as concise as
possible.

lastPrinted Open
Packaging
Conventions

The date and time of the last printing

modified Dublin Core Date on which the resource was changed

revision Open
Packaging
Conventions

The revision number. [Example: This value might indicate the number
of saves or revisions, provided the application updates it after each
revision. end example]

subject Dublin Core The topic of the content of the resource

title Dublin Core The name given to the resource

version Open
Packaging
Conventions

The version number. This value is set by the user or by the application.

10.2 Core Properties Part

Core properties are stored in XML in the Core Properties part. The Core Properties part content typemedia type

is defined in Annex E.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 51

The structure of the CoreProperties element is shown in the following diagram:

diagram

annotation Producers might provide all or a subset of these metadata properties to describe the contents of a

package.

[Example:

Example 10–1. Core properties markup

An example of a core properties part is illustrated by this example:

<coreProperties

 xmlns="http://schemas.openxmlformats.org/package/2006/metadata/

 core-properties"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <dc:creator>Alan Shen</dc:creator>

 <dcterms:created xsi:type="dcterms:W3CDTF">

 2005-06-12

 </dcterms:created>

ISO/IEC 29500-2:201x(E)

52 ©ISO/IEC 201x – All rights reserved

 <dc:title>OPC Core Properties</dc:title>

 <dc:subject>Spec defines the schema for OPC Core Properties and their

 location within the package</dc:subject>

 <dc:language>eng</dc:language>

 <version>1.0</version>

 <lastModifiedBy>Alan Shen</lastModifiedBy>

 <dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

 <contentStatus>Reviewed</contentStatus>

 <category>Specification</category>

</coreProperties>

end example]

10.3 Location of Core Properties Part

The location of the Core Properties part within the package is determined by traversing a well-defined package

relationship, as listed in Annex E. The format designer shall specify and the format producer shall create at most

one core properties relationship for a package. A format consumer shall consider more than one core properties

relationship for a package to be an error. If present, the relationship shall target the Core Properties part. [M4.1]

10.4 Support for Versioning and Extensibility

The format designer shall not specify and the format producer shall not create Core Properties that use the

Markup Compatibility namespace as defined in Annex E. A format consumer shall consider the use of the

Markup Compatibility namespace to be an error. [M4.2] Instead, versioning and extensibility functionality is

accomplished by creating a new part and using a relationship with a new type to point from the Core Properties

part to the new part. This Open Packaging specification does not provide any requirements or guidelines for new

parts or relationship types that are used to extend core properties.

10.5 Schema Restrictions for Core Properties

The following restrictions apply to every XML document instance that contains Open Packaging Conventions

core properties:

1) Producers shall not create a document element that contains refinements to the Dublin Core elements,

except for the two specified in the schema: <dcterms:created> and <dcterms:modified>. Consumers

shall consider a document element that violates this constraint to be an error. [M4.3]

2) Producers shall not create a document element that contains the xml:lang attribute at any other

location than on the keywords or value elements. Consumers shall consider a document element that

violates this constraint to be an error. [M4.4] For Dublin Core elements, this restriction is enforced by

applications.

3) Producers shall not create a document element that contains the xsi:type attribute, except for a

<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present and

shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 53

namespace. Consumers shall consider a document element that violates this constraint to be an error.

[M4.5]

ISO/IEC 29500-2:201x(E)

54 ©ISO/IEC 201x – All rights reserved

11 Thumbnails

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a

package or a package as a whole. These images can be generated by the producer and stored as parts. [O5.1]

The format designer shall specify thumbnail parts that are identified by either a part relationship or a package

relationship. The producer shall build the package accordingly. [M5.1] For information about the relationship

type for Thumbnail parts, see Annex E.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 55

12 Digital Signatures

12.1 Introduction

Format designers might allow a package to include digital signatures which to enable consumers to validate the

integrity of the contents. The producer might include the digital signature when allowed by the format designer.

[O6.1] Consumers can identify the parts of a package that have been signed and the process for validating the

signatures. Digital signatures do not protect data from being changed. However, consumers can detect whether

signed data has been altered and notify the end-user, restrict the display of altered content, or take other

actions.

Producers incorporate digital signatures using a specified configuration of parts and relationships. This clause

describes how the package digital signature framework applies the W3C Recommendation “XML-Signature

Syntax and Processing” (referred to here as the “XML Digital Signature specification”) and XML Advanced

Electronic Signatures (XAdES). In addition to complying with the XML Digital Signature specification, producers

and consumers also apply the modifications specified in §12.3.5.2.

12.2 Choosing Content to Sign

Any part or relationship in a package can be signed, including Digital Signature XML Signature parts themselves.

An entire Relationships part or a subset of relationships can be signed. By signing a subset, other relationships

can be added, removed, or modified without invalidating the signature.

Because applications use the package format to store various types of content, application designers that

include digital signatures should define signature policies that are meaningful to their users. A signature policy

specifies which portions of a package should not change in order for the content to be considered intact. To

ensure validity, some clients require that all of the parts and relationships in a package be signed. Others require

that selected parts or relationships be signed and validated to indicate that the content has not changed. The

digital signature infrastructure in packages provides flexibility in defining the content to be signed, while

allowing parts of the package to remain changeable.

12.3 Digital Signature Parts

12.3.1 Introduction

The digital signature parts consist of the Digital Signature Origin part, Digital Signature XML Signature parts, and

Digital Signature Certificate parts. Relationship names and content typemedia types relating to the use of digital

signatures in packages are defined specified in Annex E.

[Example:

ISO/IEC 29500-2:201x(E)

56 ©ISO/IEC 201x – All rights reserved

Figure 12–1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example

Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature.

The signatures relate to the signed parts.

Figure 12–1. A signed package

end example]

12.3.2 Digital Signature Origin Part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. The

package implementer shall include only Zero or one Digital Signature Origin part shall exist in a package and it

shall be targeted from the package root using the well-defined relationship type specified in Annex E. [M6.1]

This part shall exist if When creating the first the package contains any Digital Signature XML Signature parts, the

package implementer shall create the Digital Signature Origin part, if it does not exist, in order to specify a

relationship to that Digital Signature XML Signature part. [M6.2] If there are no Digital Signature XML Signature

parts in the package, the Digital Signature Origin part and is optional otherwise. [O6.2] Relationships to the

Digital Signature XML Signature parts are defined in the Relationships part. The producer should not create any

No content should exist in the Digital Signature Origin part itself. [S6.1]

The producer shall create Digital Signature XML Signature parts that have a relationship from the Digital

Signature Origin part and the consumer shall use that relationship to locate signature information within the

package. [M6.3]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 57

12.3.3 Digital Signature XML Signature Part

Digital Signature XML Signature parts are targeted from the Digital Signature Origin part by a relationship that

uses the well-defined relationship type specified in Annex E. The Digital Signature XML Signature parts contains

digital signature markup. The producer might create zZero or more Digital Signature XML Signature parts may

exist in a package. [O6.4]

Each Digital Signature XML Signature part shall be the target of The producer shall create Digital Signature XML

Signature parts that have a relationship from the Digital Signature Origin part and the consumer shall use that

relationship to locate signature information within the package. [M6.3]

12.3.4 Digital Signature Certificate Part

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature.

Alternatively, in lieu of using a Digital Signature Certificate part, the producer might store the certificate may

exist as a separate part in the package, might may be embedded it within the Digital Signature XML Signature

part itself, or might may not be included it in the package at all if certificate data is known or can be obtained

from a local or remote certificate store. [O6.5]

The package digital signature infrastructure supports X.509 certificate technology for signer authentication.

If the certificate is represented as a separate part within the package, the producer shall target that certificate

shall be the target of a Digital Signature Certificate relationship, as specified in Annex E, from the appropriate

Digital Signature XML Signature part by a Digital Signature Certificate relationship as specified in Annex E and the

consumer shall use that relationship to locate the certificate. [M6.4] The producer might sign the part holding

containing the certificate may be signed. [O6.6] The content typemedia types of the Digital Signature Certificate

part and the relationship targeting it from the Digital Signature XML Signature part are defined in Annex E.,

Producers might share A Digital Signature Certificate parts by using the same certificate may be used to create

more than one signature. [O6.7] Producers generating digital signatures should not createA Digital Signature

Certificate parts that are not should be the target of at least one Digital Signature Certificate relationship from a

Digital Signature XML Signature part. In addition, producers should remove a Digital Signature Certificate part if

removing the last Digital Signature XML Signature part that has a Digital Signature Certificate relationship to it.

[S6.2]

12.3.5 Digital Signature Markup

12.3.5.1 Introduction

The markup described here includes a subset of elements and attributes from the XML Digital Signature

specification and some package-specific markup. For a complete example of a digital signature, see §12.4.

[[Introduce the concept of the package-specific Object element (12.3.5.14) here? Overview example?]]

12.3.5.2 Modifications to the XML Digital Signature Specification

The package modifications to the XML Digital Signature specification are summarized as follows:

Commented [JH31]: 1. Update all references to sections in
XMLDSIG spec if the normative reference is updated. Or remove
them?

2. Unify pluralization and capitalization of "Relationship(s)
(T/t)ransform"

Commented [JH32]: Should this be promoted to 12.x? It's not
a DS part.

Commented [JH33]: This subclause might be redesigned?

ISO/IEC 29500-2:201x(E)

58 ©ISO/IEC 201x – All rights reserved

1) The producer shall create Reference elements within a SignedInfo element that shall reference

elements only within the same Signature element. The consumer shall consider Reference elements

within a SignedInfo element that shall not reference any resources outside the same Signature element

to be in error. [M6.5] The producer should only create Reference elements within a SignedInfo element

that should reference an Object element. [S6.5] The producer shall not create a Packages shall not

contain references to a package-specific Object element that contains a transform other than a

canonicalization transform. The consumer shall consider a reference to a package-specific Object

element that contains a transform other than a canonical transform to be an error. [M6.6]

2) The producer shall create one and The Signature element shall contain only one package-specific Object

element in the Signature element. The consumer shall consider zero or more than one package-specific

Object element in the Signature element to be an error. [M6.7]

3) The producer shall create pPackage-specific Object elements that shall contain exactly one Manifest

element and exactly one SignatureProperties element. [Note: This SignatureProperties element can

may contain multiple SignatureProperty elements. end note] The consumer shall consider pPackage-

specific Object elements that shall not contain other types of elements to be an error. [M6.8] [Note: A

signature can may contain other Object elements that are not package-specific. end note]

1) The producer shall create Reference elements within a Manifest element that shall reference

with their URI attributes only parts within the package. The consumer shall consider Reference

elements within a Manifest element that reference resources outside the package to be an

error. [M6.9] The producer shall create rRelative references to these local parts that shall have

query components that specifyies the part content typemedia type as described in §12.3.5.7.

The relative reference excluding the query component shall conform to the part name grammar.

The consumer shall consider a relative reference to a local part that has a query component that

incorrectly specifies the part content type to be an error. [M6.10] The producer shall create

Reference elements with a shall have query components that specifyies in a case-sensitive

manner the content typemedia type that matches the content type of the referenced part. The

consumer shall consider signature validation to fail if the part content type compared in a case-

sensitive manner to the content type specified in the query component of the part reference

does not match. [M6.11]

2) The producer shall not create Reference elements within a Manifest element that shall not

contain transforms other than the canonicalization transform and relationships transform. The

consumer shall consider Reference elements within a Manifest element that contain transforms

other than the canonicalization transform and relationships transform to be in error. [M6.12]

3) A producer that uses an If an optional relationships transform is used, it shall be followed it by a

canonicalization transform. The consumer shall consider any relationships transform that is not

followed by a canonicalization transform to be an error. [M6.13]

4) The producer shall create eExactly one SignatureProperty element with the Id attribute value

set to idSignatureTime shall exist for a given signature. The Target attribute value of this

element shall be either empty or contain a fragment reference to the value of the Id attribute of

the root Signature element. A SignatureProperty element shall contain exactly one

SignatureTime child element. The consumer shall consider a SignatureProperty element that

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 59

does not contain a SignatureTime element or whose Target attribute value is not empty or

does not contain a fragment reference the Id attribute of the ancestor Signature element to be

in error. [M6.14].

[Note: All modifications to XML Digital Signature markup occur in locations where the XML Signature schema

allows any namespace. Therefore, package digital signature XML is valid against the XML Signature schema. end

note]

12.3.5.3 Signature Element

The structure of a Signature element is defined in §4.1 of XML-Signature Syntax and Processing.

The producer shall create aA Signature element that shall contains exactly one local-data, package-specific

Object element and zero or more application-defined Object elements. If a Signature element violates this

constraint, a consumer shall consider this an error. [M6.15]

12.3.5.4 SignedInfo Element

The structure of a SignedInfo element is defined in §4.3 of XML-Signature Syntax and Processing.

The SignedInfo element specifies the data in the package that is signed. This element holds one or more

references to Object elements within the same Digital Signature XML Signature part. The producer shall create

aA SignedInfo element that shall contains exactly one reference to the package-specific Object element. The

consumer shall consider it an error if a SignedInfo element does not contain a reference to the package-specific

Object element. [M6.16]

12.3.5.5 CanonicalizationMethod Element

The structure of a CanonicalizationMethod element is defined in §4.3.1 of XML-Signature Syntax and

Processing.

Since XML allows equivalent content to be represented differently, a producer should apply a canonicalization

transform to the SignedInfo element when it generates it, and a consumer should apply the a canonicalization

transform to the SignedInfo element when validating it. [S6.3]

[Note: Performing a canonicalization transform ensures that SignedInfo content can be validated even if the

content has been regenerated using, for example, different entity structures, attribute ordering, or character

encoding.

Producers and consumers should also use cCanonicalization transforms should also be used for references to

parts that hold XML documents. [S6.4] These transforms are defined using the Transform element. end note]

The Packages shall us only the following canonicalization methods shall be supported by producers and

consumers of packages with digital signatures:

 XML Canonicalization (c14n)

 XML Canonicalization with Comments (c14n with comments)

Commented [JH34]: Move to top?

ISO/IEC 29500-2:201x(E)

60 ©ISO/IEC 201x – All rights reserved

Consumers validating signed packages shall fail the validation if other canonicalization methods are

encountered. [M6.34]

12.3.5.6 SignatureMethod Element

The structure of a SignatureMethod element is defined in §4.3.2 of XML-Signature Syntax and Processing.

The SignatureMethod element defines the algorithm that is used to convert the SignedInfo element into a

hashed value contained in the SignatureValue element. Producers shall support DSA and RSA algorithms shall

be usedto produce signatures. Consumers shall support DSA and RSA algorithms to validate signatures. [M6.17]

12.3.5.7 Reference Element

The structure of a Reference element is defined in §4.3.3 of XML-Signature Syntax and Processing.

12.3.5.7.1 Usage of <Reference> Element as <Manifest> Child Element

The producer shall create a Reference element within a Manifest element with When the Reference element is

a child element of a Manifest element, it shall contain a URI attribute and that attribute shall contain a part

name, without a fragment identifier. The consumer shall consider a Reference element with a URI attribute that

does not contain a part name to be an error. [M6.18]

References to package parts include the part content typemedia type as a query component. The syntax of the

relative reference is as follows:

/page1.xml?ContentType="value"

where value is the content typemedia type of the targeted part.

[Note: See §12.3.5.2 for additional requirements on Reference elements. end note]

[Example:

Example 12–2. Part reference with query component

In the following example, the content typemedia type is “application/vnd.openxmlformats-

package.relationships+xml”:

URI="/_rels/document.xml.rels?ContentType=application/vnd.openxmlformats-

package.relationships+xml"

end example]

12.3.5.8 Transforms Element

The structure of a Transforms element is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

The following transforms shall be supported by producers and consumers of packages with digital signatures:

 XML Canonicalization (c14n)

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 61

 XML Canonicalization with Comments (c14n with comments)

 Relationships transform (package-specific)

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships

transforms shall only be supported by producers and consumers when the Transform element is a descendant

element of a Manifest element [M6.19]

12.3.5.9 Transform Element

The structure of a Transform element is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

TOnly the following transform algorithms shall be usedsupported by producers and consumers of packages with

digital signatures:

 XML Canonicalization (c14n)

 XML Canonicalization with Comments (c14n with comments)

 Relationships transform (package-specific)

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships

transforms shall only be supported by producers and consumers used when the Transform element is a

descendant element of a Manifest element [M6.19]

A Relationships transform describes how the Relationship elements from the Relationships XML are filtered

using ID and/or Type attribute values. For algorithm details, see §12.3.5.21.

The URI for a Relationships transform is:

http://schemas.openxmlformats.org/package/2005/06/RelationshipTransform

The structure of a Transform element defining Relationships Transform is shown in the following diagram:

diagram

namespa

ce

http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Fixed

 Algorith

m

xs:anyU

RI

require

d

 http://schemas.openxmlformats.org/package/2005/06/Relationship

Transform

Commented [JH35]: Should be 12.3.5.25 (field code must be
updated)

ISO/IEC 29500-2:201x(E)

62 ©ISO/IEC 201x – All rights reserved

annotatio

n
Describes how the Relationship elements from the Relationships XML are filtered

using ID and/or Type attribute values. For algorithm details, see §12.3.5.23.

12.3.5.10 DigestMethod Element

The structure of a DigestMethod element is defined in §4.3.3.5 of XML-Signature Syntax and Processing.

The DigestMethod element defines the algorithm that yields the DigestValue from the object data after

transforms are applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce or

validate signaturesshall be used. [M6.17]

12.3.5.11 DigestValue Element

The structure of a DigestValue element is defined in §4.3.3.6 of XML-Signature Syntax and Processing.

The DigestValue element contains the base-64-encoded value of the digest.

12.3.5.12 SignatureValue Element

The structure of a SignatureValue element is defined in §4.2 of XML-Signature Syntax and Processing.

This element contains the actual value of the digital signature, base-64 encoded.

12.3.5.13 Object Element

The structure of an Object element is defined in §4.2 of XML-Signature Syntax and Processing.

The Object element can be either package-specific or application-defined.

12.3.5.13.1 Package-Specific Object Element

The package-specific Object element contains the Manifest and SignatureProperties elements that are package-

specific. The Id attribute shall be specified and its value shall be idPackageObject.

The structure of a package-specific Object element is shown in the following diagram:

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

Commented [JH36]: Did the old text mean only RSA-SHA1 shall
be used, or at least that one shall be supported by
implementations?

Commented [JH37]: Delete since no additional OPC-specific
requirements?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 63

 Id xs:ID Shall have value of "idPackageObject".

annotation Holds the Manifest and SignatureProperties elements that are package-specific.

[Note: Although the diagram above shows use of the Id attribute as optional, as does the XML Digital Signature

schema, for package-specific Object elements, the Id attribute shall be specified and have the value of

“idPackageObject”. This is a package-specific restriction over and above the XML Digital Signature schema. end

note]

The producer shall create eEach Signature element with shall have exactly one package-specific Object. For a

signed package, consumers shall treat the absence of a package-specific Object, or the presence of multiple

package-specific Object elements, as an invalid signature. [M6.15]

12.3.5.13.2 Application-Defined Object Element

The application-defined Object element specifies application-defined information. The format designer might

permit one or more application-defined Object elements. If allowed by the format designer, format producers

can create signatures may contain one or more application-defined Object elements. [O6.8] Producers shall

create application-defined Object elements that Such elements shall contain XML-compliant data; consumers

shall treat data that is not XML-compliant as an error. [M6.20] Format designers and producers might not apply

package-specific restrictions regarding URIs and Transform elements to application-defined Object elements.

[O6.9]

12.3.5.14 KeyInfo Element

The structure of a KeyInfo element is defined in §4.4 of XML-Signature Syntax and Processing.

Producers and consumers shall use tThe certificate embedded in the Digital Signature XML Signature part shall

be used when it is specified. [M6.21]

12.3.5.15 Manifest Element

The structure of a Manifest element is defined in §4.4 of XML-Signature Syntax and Processing.

The Manifest element within a package-specific Object element contains references to the signed parts of the

package. The producer shall not create Such a Manifest element that shall not references any data outside of

the package. The consumer shall consider a Manifest element that references data outside of the package to be

in error. [M6.22]

12.3.5.16 SignatureProperties Element

The structure of a SignaturePropertieselement is defined in §5.2 of XML-Signature Syntax and Processing.

The SignatureProperties element contains additional information items concerning the generation of

signatures placed in SignatureProperty elements.

Commented [JH38]: Move this before Object Element to
match ordering of elements defined in XMLDSIG?

Commented [JH39]: Delete since no additional OPC-specific
requirements?

ISO/IEC 29500-2:201x(E)

64 ©ISO/IEC 201x – All rights reserved

12.3.5.17 SignatureProperty Element

The structure of a SignatureProperty element within a package-specific Object element is shown in the

following diagram:

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Target xs:anyURI required Contains a unique identifier of the

Signature element.

 Id xs:ID optional Contains the signature property’s unique

identifier.

annotation Contains additional information concerning the generation of signatures.

12.3.5.18 SignatureTime Element

The SignatureTime element holds the date/time stamp for the signature. A SignatureTime element shall only

occur as a child element of a SignatureProperty element. The schema definition for the SignatureTime

element is specified in Annex C.

The structure of a SignatureTime element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

Commented [JH40]: Needs a field

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 65

annotation Holds the date/time stamp for the signature.

SignatureTime elements can only occur as a child of SignatureProperty.

12.3.5.19 Format Element

The Format element specifies the format of the date/time stamp. The date/time format shall conform to the

syntax described in the W3C Note "Date and Time Formats". [M6.23] The schema definition for the Format

element is specified in Annex C.

The structure of a Format element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Specifies the format of the date/time stamp. The producer shall create a data/time format that

conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer shall

consider a format that does not conform to the syntax described in that WC3 note to be in error.

[M6.23]

The date and time format definition conforms to the syntax described in the W3C Note “Date and Time

Formats.”

12.3.5.20 Value Element

The Value element specifies the value of the date/time stamp. The value shall conform to the format specified

in the Format element. [M6.24] The schema definition for the Value element is specified in Annex C.

The structure of a Value element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Holds the value of the date/time stamp. The producer shall create a value that conforms to the

format specified in the Format element. The consumer shall consider a value that does not

conform to that format to be in error. [M6.24]

Commented [JH41]: Needs a field

Commented [JH42]: Needs a field

ISO/IEC 29500-2:201x(E)

66 ©ISO/IEC 201x – All rights reserved

12.3.5.21 RelationshipReference Element

The RelationshipReference element specifies the Relationship element with the specified Id value is to be

signed. A RelationshipsReference element shall only occur as a child element of a Transform element

(§12.3.5.9) that is a Relationships Transform. The schema definition for the RelationshipReference element is

specified in Annex C.

Attributes Description

SourceId (Reference to Relationship) Specifies the value of the Id attribute of the
referenced Relationship element within the
Relationships part specified by the URI attribute of
the Reference element containing this Relationships
Transform.

The structure of a RelationshipReference element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes Name Type Use Default Fixed Annotation

SourceId xsd:string required Specifies the value of the Id attribute of the

Relationship element.

annotation Specifies the Relationship element with the specified Id value is to be signed.

RelationshipsReference can only occur as a child element of the Transform

Element (§12.3.5.9) that is a Relationship Transform.

12.3.5.22 RelationshipsGroupReference Element

The RelationshipsGroupReference element specifies that the group of Relationship elements with the

specified value for the Type attribute is to be signed. A RelationshipsGroupReference element shall only occur

as a child element of the Transform element (§12.3.5.9) that is a Relationships Transform. The schema

definition for the RelationshipsGroupReference element is specified in Annex C.

Attributes Description

Commented [JH43]: Needs a field

Commented [JH44]: Format table as appropriate

Commented [JH45]: Needs a field

Commented [JH46]: Format table as appropriate

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 67

SourceType (Relationship Type) Specifies the value of the Type attribute of
Relationship elements within the Relationships part
specified by the URI attribute of the Reference
element containing this Relationships Transform.

The structure of a RelationshipsGroupReference element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes Name Type Use Default Fixed Annotation

SourceType xsd:anyURI required Specifies the value of the Type attribute of

Relationship elements.

annotation Specifies that the group of Relationship elements with the specified Type value is to

be signed.

RelationshipsGroupReference can only occur as a child element of the Transform

Element (§12.3.5.9) that is a Relationship Transform.

Format designers might permit producers to sign individual relationships in a package or the Relationships part

as a whole. [O6.10] To sign a subset of relationships, the producer shall use the package-specific rRelationships

tTransform shall be used. The consumer shall use the package-specific relationships transform to validate the

signature when a subset of relationships are signed. [M6.25] To filter signed relationships based on their IDs, a

RelationshipReference tag element with the corresponding SourceID attribute should be is added to the

rRelationships tTransform element (§12.3.5.9). and to To filter signed relationships based on their type, a

RelationshipGroupReference tag element with the corresponding SourceType attribute should be is added to

the rRelationships tTransform element. A producer shall not specify more than Only one relationship transform

shall be specified for a particular rRelationships part. A consumer shall treat the presence of more than one

relationship transform for a particular relationships part as an error. [M6.35]

Producers shall specify a A canonicalization transform shall immediately following a rRelationships tTransform

and consumers that encounter a relationships transform that is not immediately followed by a canonicalization

transform shall generate an error. [M6.26]

12.3.5.23 Relationships Transform Algorithm

The relationships transform takes the XML document from the Relationships part and converts it to another

XML document.

Commented [JH47]: This should probably be moved elsewhere

ISO/IEC 29500-2:201x(E)

68 ©ISO/IEC 201x – All rights reserved

The package implementer might create The relationships XML that might contains content from several

namespaces, along with versioning instructions as defined in Part 3, “Markup Compatibility and Extensibility”.

[O6.11]

The relationships transform algorithm is as follows:

Step 1: Process versioning instructions

1) The package implementer shall process the versioning instructions, considering that the only known

namespace is the Relationships namespace.

2) The package implementer shall remove all ignorable content, ignoring preservation attributes.

3) The package implementer shall remove all versioning instructions.

Step 2: Sort and filter relationships

1) The package implementer shall rRemove all namespace declarations except the Relationships

namespace declaration.

2) The package implementer shall rRemove the Relationships namespace prefix, if it is present.

3) The package implementer shall sSort relationship elements by Id value in lexicographical order,

considering Id values as case-sensitive Unicode strings.

4) The package implementer shall rRemove all Relationship elements that do not have either an Id value

that matches any SourceId value or a Type value that matches any SourceType value, among the

SourceId and SourceType values specified in the transform definition. Producers and consumers Values

shall be compared values as case-sensitive Unicode strings. [M6.27] The resulting XML document holds

all Relationship elements that either have an Id value that matches a SourceId value or a Type value

that matches a SourceType value specified in the transform definition.

Step 3: Prepare for canonicalization

1) The package implementer shall rRemove all characters between the Relationships start tag and the first

Relationship start tag.

2) The package implementer shall rRemove any contents of the Relationship element.

3) The package implementer shall rRemove all characters between the last Relationship end tag and the

Relationships end tag.

4) If there are no Relationship elements, the package implementer shall remove all characters between

the Relationships start tag and the Relationships end tag.

5) The package implementer shall rRemove comments from the Relationships XML content.

6) The package implementer shall aAdd a TargetMode attribute with its default value, if this optional

attribute is missing from the Relationship element.

7) The package implementer can generate Relationship elements can be specified as start-tag/end-tag

pairs with empty content, or as empty elements. A canonicalization transform, applied immediately

after the Relationships Transform, converts all XML elements into start-tag/end-tag pairs.

Commented [JH48]: Should this be replaced with a reference
to Part 3, clause 9 (semantics & reference processing model)?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 69

12.4 Additional Requirements for Use of XAdES

This subclause specifies additional requirements for optional items in XAdES.

 The SignedSignatureProperties element shall contain a SigningCertificate child element as specified in

§7.2.2 of XAdES.

 A SigningTime element [[shall/should]] be present as specified in §7.2.1 of XAdES.

 If [[…]], the time stamp information shall be specified as an EncapsulatedTimeStamp element, as

specified in §7.1.4.2 of XAdES, containing DER encoded ASN.1. Data, as specified in XXX.

 If the signature contains [[time stamps on?]] references to validation data, the SigAndRefsTimestamp

element as specified in §7.5.1 and §7.5.1.1 of XAdES shall be used.

 A Reference element specifying the digest of the SignedProperties element shall be present as

specified in §6.2.1 of XAdES. This Reference element [[shall/should]] be a descendent of the SignedInfo

element which is a descendent of the Signature element.

 If the SignaturePolicyIdentifier element as specified in §7.2.3 of XAdES is used, the SignaturePolicyId

element as specified in §7.2.3 of XAdES should be used.

12.412.5 Digital Signature Example

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and

Processing” with some package-specific modifications specified in §12.3.5.2.

[Example:

Digital signature markup for packages is illustrated in this example. For information about namespaces used in

this example, see Annex E.

<Signature Id="SignatureId" xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#dsa-sha1"/>

 <Reference

 URI="#idPackageObject"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

Commented [JH49]: Need to incorporate pending new version
of XAdES
Need to say something about using old vs. new (e.g., allow old,
recommend new)

Commented [JH50]: John TBD: Why does MSO requrie this for
OOXML files?

Commented [JH51]: ODF: If any timestamp elements of type
XAdESTimeStampType are present, such as …,

MS-OFFCRYPTO: If the information as specified in [XAdES] contains
a time stamp as specified by the requirements for XAdES-T

What scope should we target, just -T or -T/-C/-A or other?
XAdESTimeStampType is a ComplexType for:
 - SignatureTimeStamp (-T)
 - SigAndRefsTimeStamp (-C)
 - RefsOnlyTimeStamp (-C)
 - ArchiveTimeStamp (-A)

Commented [JH52]: RFC 3161 and/or UTI-T X.690?

Commented [JH53]: For Jose

ODF: "If references to validation data are present "
MS-OFF: "If … contains time stamps on references to validation data
"

Commented [JH54]: [JP] Miyachi-san prefers we require
CertificatesValues/RevocationValues (-X-L)

Commented [JH55]: Suggested by JP, needs discussion

Commented [JH56]: Need one (partial?) with XAdES, or add
XAdES to this and comment it as optional?

ISO/IEC 29500-2:201x(E)

70 ©ISO/IEC 201x – All rights reserved

 URI="#Application"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>…</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>…</X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org

 /

 package/2006/digital-signature">

 <Manifest>

 <Reference URI="/document.xml?ContentType=application/

 vnd.ms-document+xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="/_rels/document.xml.rels?ContentType=application/

 vnd.openxmlformats-package.relationships+xml">

 <Transforms>

 <Transform Algorithm="http://schemas.openxmlformats.org/

 package/2005/06/RelationshipTransform">

 <pds:RelationshipReference SourceId="B1"/>

 <pds:RelationshipReference SourceId="A1"/>

 <pds:RelationshipReference SourceId="A11"/>

 <pds:RelationshipsGroupReference SourceType=

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 71

 "http://schemas.customexample.com/required-resource"/>

 </Transform>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </Manifest>

 <SignatureProperties>

 <SignatureProperty Id="idSignatureTime" Target="#SignatureId">

 <pds:SignatureTime>

 <pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>

 <pds:Value>2003-07-16T19:20+01:00</pds:Value>

 </pds:SignatureTime>

 </SignatureProperty>

 </SignatureProperties>

 </Object>

 <Object Id="Application">…</Object>

</Signature>

end example]

12.512.6 Generating Signatures

The steps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-

Signature Syntax and Processing,” with some modification for package-specific constructs.

The steps below might not be sufficient for generating signatures that contain application-defined Object

elements. Format designers that utilize application-defined Object elements shall also define the additional

steps that shall be performed to sign the application-defined Object elements.

To generate references:

1) For each package part being signed:

1) The package implementer shall aApply the transforms, as determined by the producer, to the

contents of the part. [Note: Relationships tTransforms are applied only to Relationship parts.

When applied, the rRelationships tTransform filters the subset of relationships within the entire

Relationship part for purposes of signing. end note]

2) The package implementer shall cCalculate the digest value using the resulting contents of the

part.

Commented [JH57]: Does anything need to change here for
XAdES?

ISO/IEC 29500-2:201x(E)

72 ©ISO/IEC 201x – All rights reserved

2) The package implementer shall cCreate a Reference element that includes the reference of the part

with the query component matching the content typemedia type of the target part, necessary

Transform elements, the DigestMethod element and the DigestValue element.

3) The package implementer shall cConstruct the package-specific Object element containing a Manifest

element with both the child Reference elements obtained from the preceding step and a child

SignatureProperties element, which, in turn, contains a child SignatureTime element.

4) The package implementer shall cCreate a reference to the resulting package-specific Object element.

When signing Object element data, package implementers shall follow the generic reference creation algorithm

described in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. [M6.28]

To generate signatures:

1) The package implementer shall cCreate the SignedInfo element with a SignatureMethodelement, a

CanonicalizationMethod element, and at least one Reference element.

2) The package implementer shall cCanonicalize the data and then calculate the SignatureValue element

using the SignedInfo element based on the algorithms specified in the SignedInfo element.

3) The package implementer shall cConstruct a Signature element that includes SignedInfo, Object, and

SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall

also include the KeyInfo element.

12.612.7 Validating Signatures

12.6.112.7.1 Introduction

Consumers validate signatures Signature validation followsing the steps described in §3.2 of the W3C

Recommendation “XML-Signature Syntax and Processing.” When validating digital signatures, consumers shall

verify the content typemedia type and the digest contained in each Reference descendant element of the

SignedInfo element shall be verified, and validate the signature calculated using the SignedInfo element shall

be validated. [M6.29]

The steps below might not be sufficient to validate signatures that contain application-defined Object elements.

Format designers that utilize application-defined Object elements shall also define the additional steps that shall

be performed to validate the application-defined Object elements.

To validate references:

1) The package implementer shall cCanonicalize the SignedInfo element based on the

CanonicalizationMethod element specified in the SignedInfo element.

2) For each Reference element in the SignedInfo element:

1) The package implementer shall oObtain the Object element to be digested.

2) For the package-specific Object element, the package implementer shall validate references to

signed parts stored in the Manifest element. The package implementer shall consider

rReferences are invalid if there is a missing part. [M6.9] [Note: If a rRelationships tTransform is

Commented [JH58]: Does anything need to change here for
XAdES?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 73

specified for a signed Relationships part, only the specified subset of relationships within the

entire Relationships part are validated. end note]

3) For the package-specific Object element, validation of Reference elements includes verifying

the content typemedia type of the referenced part and the content typemedia type specified in

the reference query component. Package implementers shall consider rReferences are invalid if

these two values are different. The string comparison shall be case-sensitive and locale-

invariant. [M6.11]

4) The package implementer shall dDigest the obtained Object element using the DigestMethod

element specified in the Reference element.

5) The package implementer shall cCompare the generated digest value against the DigestValue

element in the Reference element of the SignedInfo element. Package implementers shall

consider rReferences are invalid if there is any mismatch. [M6.30]

To validate signatures:

1) The package implementer shall oObtain the public key information from the KeyInfo element or from

an external source.

2) The package implementer shall oObtain the canonical form of the SignatureMethod element using the

CanonicalizationMethod element. The package implementer shall use the result and the previously

obtained KeyInfo element are used to confirm the SignatureValue element stored in the SignedInfo

element. The package implementer shall decrypt tThe SignatureValue element shall be decrypted using

the public key prior to comparison.

12.6.212.7.2 Signature Validation and Streaming Consumption

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and

processing signatures. [M6.31]

12.712.8 Support for Versioning and Extensibility

12.7.112.8.1 Introduction

The package digital signature infrastructure supports the exchange of signed packages between current and

future package clients.

12.7.212.8.2 Using Relationship Types

Future versions of the package format might specify distinct relationship types for revised signature parts. Using

these relationships, producers would be able to store separate signature information for current and previous

versions. Consumers would be able to choose the signature information they know how to validate.

Figure 12–2, “Part names and logical item names”, illustrates this versioning capability that might be available in

future versions of the package format.

Figure 12–2. A package containing versioned signatures

ISO/IEC 29500-2:201x(E)

74 ©ISO/IEC 201x – All rights reserved

12.7.312.8.3 Markup Compatibility Namespace for Package Digital Signatures

The package implementer shall not use tThe Markup Compatibility namespace, as specified in Annex E, shall not

be used within the package-specific Object element. The package implementer shall consider the use of the

Markup Compatibility namespace within the package-specific Object element to be an error. [M6.32]

Format designers might specify an application-defined package part format that allows for the embedding of

versioned or extended content that might not be fully understood by all present and future implementations.

Producers might create such embedded versioned or extended content and consumers might encounter such

content. [O6.12] [Example: An XML package part format might rely on Markup Compatibility elements and

attributes to embed such versioned or extended content. end example]

If an application allows for a single part to contain information that might not be fully understood by all

implementations, then the format designer shall carefully design the signing and verification policies to account

for the possibility of different implementations being used for each action in the sequence of content creation,

content signing, and signature verification. Producers and consumers shall account for this possibility in their

signing and verification processing. [M6.33]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 75

Annex A
(normative)

Preprocessing for Generating Relative
References

Although relative references within packages can reference parts, Unicode strings that are similar to but are not

strictly relative references are used to reference parts. [Example: "\a.xml" is not a relative reference since the

backslash character is disallowed in RFC 3986/3987.] This annex specifies a preprocessing for the conversion of

such Unicode strings to relative references.

This preprocessing is neither required nor recommended.

This preprocessing has eight steps. Some implementations support only some of them.

1) Percent-encode each open bracket (“[“) and close bracket (“]”).

2) Percent-encode each percent (“%”) character that is not followed by a hexadecimal notation of an octet

value.

3) Un-percent-encode each percent-encoded unreserved character.

4) Un-percent-encode each forward slash (“/”) and back slash (“\”).

5) Convert all back slashes to forward slashes.

6) If present in a segment containing non-dot (“.”) characters, remove trailing dot (“.”) characters from

each segment.

7) Replace each occurrence of multiple consecutive forward slashes (“/”) with a single forward slash.

8) If a single trailing forward slash (“/”) is present, remove that trailing forward slash.

9) Remove complete segments that consist of three or more dots.

[Example:

Examples of Unicode strings converted to IRIs, URIs, and part names are shown below:

Unicode string IRI URI Part name

/a/b.xml /a/b.xml /a/b.xml /a/b.xml

/a/ц.xml /a/ц.xml /a/%D1%86.xml /a/%D1%86.xml

/%41/%61.xml /%41/%61.xml /%41/%61.xml /A/a.xml

/%25XY.xml /%25XY.xml /%25XY.xml /%25XY.xml

/%XY.xml /%XY.xml /%25XY.xml /%25XY.xml

/%2541.xml /%2541.xml /%2541.xml /%2541.xml

Commented [rcj59]: Need to reword this.

ISO/IEC 29500-2:201x(E)

76 ©ISO/IEC 201x – All rights reserved

Unicode string IRI URI Part name

/../a.xml /../a.xml /../a.xml /a.xml

/./ц.xml /./ц.xml /./%D1%86.xml /%D1%86.xml

/%2e/%2e/a.xml /%2e/%2e/a.xml /%2e/%2e/a.xml /a.xml

\a.xml %5Ca.xml %5Ca.xml /a.xml

\%41.xml %5C%41.xml %5C%41.xml /A.xml

/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml

\%2e/a.xml %5C%2e/a.xml %5C%2e/a.xml /a.xml

end example]

Commented [rcj60]: I (Murata-san) removed some obviously
unnecessary rows and columns, but I have to remove more.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 77

Annex B
(normative)

ZIP Appnote.txt Clarifications

B.1 Introduction

The ZIP specification includes a number of features that packages do not support. Some ZIP features are clarified

in the context of this Open Packaging specification. Package producers and consumers shall adhere to the

requirements noted below.

B.2 Archive File Header Consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data

Descriptors, and in the File headers within the Central Directory Record. For a ZIP archive to be a physical layer

for a package, the package implementer shall ensure that the ZIP archive holds equal values in the appropriate

fields of every File Header within the Central Directory and the corresponding Local File Header and Data

Descriptor pair, when the Data Descriptor exists, except as described in Table B–5 for bit 3 of general-purpose

bit flags. [M3.14]

B.3 Data Descriptor Signature

Packages may contain a 4-byte signature value 0x08074b50 at the beginning of Data Descriptors, immediately

before the crc-32 field. Package implementers should be able to read packages, whether or not a signature

exists.

B.4 Table Key

 “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex B indicates a

package implementer shall support reading the ZIP archive containing this record or field, however,

support might mean ignoring. [M3.15] During production of a package, a “Yes” value for a field in a table

in Annex B indicates that the package implementer shall write out this record or field. [M3.16]

 “No” — A “No” value for a field in a table in Annex B indicates the package implementer should not use

this record or field. [M3.17]

 “Optional” — An “Optional” value for a record in a table in Annex B indicates that package implementers

might write this record during production. [O3.2]

 “Partially, details below” — A “Partially, details below” value for a record in a table in Annex B indicates

that the record contains fields that might not be supported by package implementers during production

or consumption. See the details in the corresponding table to determine requirements. [M3.18]

ISO/IEC 29500-2:201x(E)

78 ©ISO/IEC 201x – All rights reserved

 “Only used when needed” — The value “Only used when needed” associated with a record in a table in

Annex C indicates that the package implementer shall use the record only when needed to store data in

the ZIP archive. [M3.19]

Table B–1 specifies the requirements for package production, consumption, and editing in regard to particular

top-level records or fields described in the ZIP Appnote.txt. [Note: In this context, editing means in-place

modification of individual records. A format specification can require editing applications to instead modify

content in-memory and re-write all parts and relationships on each save in order to maintain more rigorous

control of ZIP record usage. end note]

Table B–1. Support for records

Record name Supported on
Consumption

Supported on
Production

Pass through on
editing

Local File Header Yes (partially, details
below)

Yes (partially, details
below)

Yes

File data Yes Yes Yes

Data descriptor Yes Optional Optional

Archive decryption
header

No No No

Archive extra data
record

No No No

Central directory
structure:
File header

Yes (partially, details
below)

Yes (partially, details
below)

Yes

Central directory
structure:
Digital signature

Yes (ignore the
signature data)

Optional Optional

Zip64 end of central
directory record V1
(from spec version
4.5)

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

Zip64 end of central
directory record V2
(from spec version
6.2)

No No No

Zip64 end of central
directory locator

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

End of central
directory record

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Yes

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 79

Table B–2 specifies the requirements for package production, consumption, and editing in regard to individual

record components described in the ZIP Appnote.txt.

Table B–2. Support for record components

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Local File Header Local file header signature Yes Yes Yes

Version needed to extract Yes (partially, see
Table B–3)

Yes (partially, see
Table B–3)

Yes (partially,
see Table B–3)

General purpose bit flag Yes (partially, see
Table B–5)

Yes (partially, see
Table B–5)

Yes (partially,
see Table B–5)

Compression method Yes (partially, see
Table B–4)

Yes (partially, see
Table B–4)

Yes (partially,
see Table B–4)

Last mod file time Yes Yes Yes

Last mod file date Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table B–6)

Yes (partially, see
Table B–6)

Yes (partially,
see Table B–6)

Central directory
structure: File header

Central file header
signature

Yes Yes Yes

version made by: high
byte

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes Yes

Version needed to extract
(see Table B–3 for details)

Yes (partially, see
Table B–3)

Yes (1.0, 1.1, 2.0,
4.5)

Yes

General purpose bit flag Yes (partially, see
Table B–5)

Yes (partially, see
Table B–5)

Yes (partially,
see Table B–5)

Compression method Yes (partially, see
Table B–4)

Yes (partially, see
Table B–4)

Yes (partially,
see Table B–4)

Last mod file time (Pass
through, no
interpretation)

Yes Yes Yes

ISO/IEC 29500-2:201x(E)

80 ©ISO/IEC 201x – All rights reserved

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Last mod file date (Pass
through, no
interpretation)

Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File comment length Yes Yes
(always set to 0)

Yes

Disk number start Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Internal file attributes Yes Yes Yes

External file attributes
(Pass through, no
interpretation)

Yes Yes
(MS DOS default
value)

Yes

Relative offset of local
header

Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table B–6)

Yes (partially, see
Table B–6)

Yes (partially,
see Table B–6)

File comment (variable
size)

Yes Yes (always set to
empty)

Yes

Zip64 end of central
directory V1 (from spec
version 4.5, only used
when needed)

Zip64 end of central
directory signature

Yes Yes Yes

Size of zip64 end of central
directory

Yes Yes Yes

Version made by: high
byte (Pass through, no
interpretation)

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes (always 4.5 or
above)

Yes

Version needed to extract
(see Table B–3 for details)

Yes (4.5) Yes (4.5) Yes (4.5)

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 81

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

Zip64 extensible data
sector

Yes No Yes

Zip64 end of central
directory locator (only
used when needed)

Zip64 end of central dir
locator signature

Yes Yes Yes

Number of the disk with
the start of the zip64 end
of central directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Relative offset of the zip64
end of central directory
record

Yes Yes Yes

Total number of disks Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

End of central directory
record

End of central dir
signature

Yes Yes Yes

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk archive)

Yes (always 1
disk)

Yes (partial —
no multi disk
archive)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

ISO/IEC 29500-2:201x(E)

82 ©ISO/IEC 201x – All rights reserved

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

ZIP file comment length Yes Yes Yes

ZIP file comment Yes No Yes

Table B–3 specifies the detailed production, consumption, and editing requirements for the Extract field, which

is fully described in the ZIP Appnote.txt.

Table B–3. Support for Version Needed to Extract field

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is a folder (directory) Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is compressed using
Deflate compression

Yes Yes Yes

2.0 File is encrypted using
traditional PKWARE
encryption

No No No

2.1 File is compressed using
Deflate64(tm)

No No No

2.5 File is compressed using
PKWARE DCL Implode

No No No

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format
extensions

Yes Yes Yes

4.6 File is compressed using
BZIP2 compression

No No No

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES No No No

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 83

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

5.0 File is encrypted using
original RC2 encryption

No No No

5.0 File is encrypted using RC4
encryption

No No No

5.1 File is encrypted using AES
encryption

No No No

5.1 File is encrypted using
corrected RC2 encryption

No No No

5.2 File is encrypted using
corrected RC2-64
encryption

No No No

6.1 File is encrypted using non-
OAEP key wrapping

No No No

6.2 Central directory encryption No No No

Table B–4 specifies the detailed production, consumption, and editing requirements for the Compression

Method field, which is fully described in the ZIP Appnote.txt.

Table B–4. Support for Compression Method field

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression
factor 1

No No No

3 The file is Reduced with compression
factor 2

No No No

4 The file is Reduced with compression
factor 3

No No No

5 The file is Reduced with compression
factor 4

No No No

6 The file is Imploded No No No

7 Reserved for Tokenizing compression
algorithm

No No No

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

ISO/IEC 29500-2:201x(E)

84 ©ISO/IEC 201x – All rights reserved

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

10 PKWARE Data Compression Library
Imploding

No No No

11 Reserved by PKWARE No No No

Table B–5 specifies the detailed production, consumption, and editing requirements when utilizing these

general-purpose bit flags within records.

Table B–5. Support for modes/structures defined by general-purpose bit flags

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

0 If set, indicates that the file is encrypted. No No No

1,
2

Bit
2

Bit
1

0 0 Normal (-en) compression option
was used.

0 1 Maximum (-exx/-ex) compression
option was used.

1 0 Fast (-ef) compression option was
used.

1 1 Super Fast (-es) compression
option was used.

Yes Yes Yes

3 If this bit is set, the fields crc-32, compressed size,
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data.

Yes Yes Yes

4 Reserved for use with method 8, for enhanced
deflating

No Bits set to
0

Yes

5 If this bit is set, this indicates that the file is
compressed patched data. (Requires PKZIP version
2.70 or greater.)

No Bits set to
0

Yes

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 85

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

6 Strong encryption. If this bit is set, you should set
the version needed to extract value to at least 50
and you shall set bit 0. If AES encryption is used,
the version needed to extract value shall be at
least 51.

No Bits set to
0

Yes

7 Currently unused No Bits set to
0

Yes

8 Currently unused No Bits set to
0

Yes

9 Currently unused No Bits set to
0

Yes

10 Currently unused No Bits set to
0

Yes

11 Currently unused No Bits set to
0

Yes

12 Unused No Bits set to
0

Yes

13 Used when encrypting the Central Directory to
indicate selected data values in the Local Header
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.

No Bits set to
0

Yes

14 Unused No Bits set to
0

Yes

15 Unused No Bits set to
0

Yes

Table B–6 specifies the detailed production, consumption, and editing requirements for the Extra field entries

reserved by PKWARE and described in the ZIP Appnote.txt.

Table B–6. Support for Extra field (variable size), PKWARE-reserved

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0001 ZIP64 extended information
extra field

Yes Yes Optional

0x0007 AV Info No No Yes

ISO/IEC 29500-2:201x(E)

86 ©ISO/IEC 201x – All rights reserved

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0008 Reserved for future Unicode
file name data (PFS)

No No Yes

0x0009 OS/2 No No Yes

0x000a NTFS No No Yes

0x000c OpenVMS No No Yes

0x000d Unix No No Yes

0x000e Reserved for file stream and
fork descriptors

No No Yes

0x000f Patch Descriptor No No Yes

0x0014 PKCS#7 Store for X.509
Certificates

No No Yes

0x0015 X.509 Certificate ID and
Signature for individual file

No No Yes

0x0016 X.509 Certificate ID for
Central Directory

No No Yes

0x0017 Strong Encryption Header No No Yes

0x0018 Record Management
Controls

No No Yes

0x0019 PKCS#7 Encryption
Recipient Certificate List

No No Yes

0x0065 IBM S/390 (Z390), AS/400
(I400) attributes —
uncompressed

No No Yes

0x0066 Reserved for IBM S/390
(Z390), AS/400 (I400)
attributes — compressed

No No Yes

0x4690 POSZIP 4690 (reserved) No No Yes

Table B–7 specifies the detailed production, consumption, and editing requirements for the Extra field entries

reserved by third parties and described in the ZIP Appnote.txt.

Table B–7. Support for Extra field (variable size), third-party extensions

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x07c8 Macintosh No No Yes

0x2605 ZipIt Macintosh No No Yes

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 87

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x2705 ZipIt Macintosh
1.3.5+

No No Yes

0x2805 ZipIt Macintosh
1.3.5+

No No Yes

0x334d Info-ZIP Macintosh No No Yes

0x4341 Acorn/SparkFS No No Yes

0x4453 Windows NT security
descriptor (binary
ACL)

No No Yes

0x4704 VM/CMS No No Yes

0x470f MVS No No Yes

0x4b46 FWKCS MD5 (see
below)

No No Yes

0x4c41 OS/2 access control
list (text ACL)

No No Yes

0x4d49 Info-ZIP OpenVMS No No Yes

0x4f4c Xceed original
location extra field

No No Yes

0x5356 AOS/VS (ACL) No No Yes

0x5455 extended timestamp No No Yes

0x554e Xceed unicode extra
field

No No Yes

0x5855 Info-ZIP Unix (original,
also OS/2, NT, etc)

No No Yes

0x6542 BeOS/BeBox No No Yes

0x756e ASi Unix No No Yes

0x7855 Info-ZIP Unix (new) No No Yes

0xa220 Padding, Microsoft No Optional Optional

0xfd4a SMS/QDOS No No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0.

[M3.20]

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2,147,483,647. [M3.21]

ISO/IEC 29500-2:201x(E)

88 ©ISO/IEC 201x – All rights reserved

Annex C
(normative)

Schemas - W3C XML Schema

C.1 Introduction

This Part of ISO/IEC 29500 includes a family of schemas defined using the W3C XML Schema 1.0 syntax. The

normative definitions of these schemas follow below, and they also reside in an accompanying file named

OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form.

C.2 Content TypeMedia Types Stream

<xs:schema xmlns="http://schemas.openxmlformats.org/package/2006/content-types" 1

xmlns:xs="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/content-types" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xs:element name="Types" type="CT_Types"/> 5

 <xs:element name="Default" type="CT_Default"/> 6

 <xs:element name="Override" type="CT_Override"/> 7

 <xs:complexType name="CT_Types"> 8

 <xs:choice minOccurs="0" maxOccurs="unbounded"> 9

 <xs:element ref="Default"/> 10

 <xs:element ref="Override"/> 11

 </xs:choice> 12

 </xs:complexType> 13

 <xs:complexType name="CT_Default"> 14

 <xs:attribute name="Extension" type="ST_Extension" use="required"/> 15

 <xs:attribute name="ContentType" type="ST_ContentType" use="required"/> 16

 </xs:complexType> 17

 <xs:complexType name="CT_Override"> 18

 <xs:attribute name="ContentType" type="ST_ContentType" use="required"/> 19

 <xs:attribute name="PartName" type="xs:anyURI" use="required"/> 20

 </xs:complexType> 21

 <xs:simpleType name="ST_ContentType"> 22

 <xs:restriction base="xs:string"> 23

 <xs:pattern value=" (((([\p{IsBasicLatin}-24

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))/((([\p{IsBasicLatin}-25

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))((\s+)*;(\s+)*(((([\p{IsBasicLatin}-26

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))=((([\p{IsBasicLatin}-27

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+)|("(([\p{IsLatin-28

1Supplement}\p{IsBasicLatin}-[\p{Cc}"\n\r]]|(\s+))|(\\[\p{IsBasicLatin}]))*"))))*)"/> 29

 </xs:restriction> 30

 </xs:simpleType> 31

 <xs:simpleType name="ST_Extension"> 32

 <xs:restriction base="xs:string"> 33

 <xs:pattern value=" ([!$&'\(\)*\+,:=]|(%[0-9a-fA-F][0-9a-fA-F])|[:@]|[a-zA-Z0-9\-_~])+"/> 34

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 89

 </xs:restriction> 35

 </xs:simpleType> 36

</xs:schema>37

C.3 Core Properties Part

<xs:schema targetNamespace="http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 1

xmlns="http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 2

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:dc="http://purl.org/dc/elements/1.1/" 3

xmlns:dcterms="http://purl.org/dc/terms/" elementFormDefault="qualified" blockDefault="#all"> 4

 <xs:import namespace="http://purl.org/dc/elements/1.1/" 5

schemaLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dc.xsd"/> 6

 <xs:import namespace="http://purl.org/dc/terms/" 7

schemaLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dcterms.xsd"/> 8

 <xs:import id="xml" namespace="http://www.w3.org/XML/1998/namespace"/> 9

 <xs:element name="coreProperties" type="CT_CoreProperties"/> 10

 <xs:complexType name="CT_CoreProperties"> 11

 <xs:all> 12

 <xs:element name="category" minOccurs="0" maxOccurs="1" type="xs:string"/> 13

 <xs:element name="contentStatus" minOccurs="0" maxOccurs="1" type="xs:string"/> 14

 <xs:element ref="dcterms:created" minOccurs="0" maxOccurs="1"/> 15

 <xs:element ref="dc:creator" minOccurs="0" maxOccurs="1"/> 16

 <xs:element ref="dc:description" minOccurs="0" maxOccurs="1"/> 17

 <xs:element ref="dc:identifier" minOccurs="0" maxOccurs="1"/> 18

 <xs:element name="keywords" minOccurs="0" maxOccurs="1" type="CT_Keywords"/> 19

 <xs:element ref="dc:language" minOccurs="0" maxOccurs="1"/> 20

 <xs:element name="lastModifiedBy" minOccurs="0" maxOccurs="1" type="xs:string"/> 21

 <xs:element name="lastPrinted" minOccurs="0" maxOccurs="1" type="xs:dateTime"/> 22

 <xs:element ref="dcterms:modified" minOccurs="0" maxOccurs="1"/> 23

 <xs:element name="revision" minOccurs="0" maxOccurs="1" type="xs:string"/> 24

 <xs:element ref="dc:subject" minOccurs="0" maxOccurs="1"/> 25

 <xs:element ref="dc:title" minOccurs="0" maxOccurs="1"/> 26

 <xs:element name="version" minOccurs="0" maxOccurs="1" type="xs:string"/> 27

 </xs:all> 28

 </xs:complexType> 29

 <xs:complexType name="CT_Keywords" mixed="true"> 30

 <xs:sequence> 31

 <xs:element name="value" minOccurs="0" maxOccurs="unbounded" type="CT_Keyword"/> 32

 </xs:sequence> 33

 <xs:attribute ref="xml:lang" use="optional"/> 34

 </xs:complexType> 35

 <xs:complexType name="CT_Keyword"> 36

 <xs:simpleContent> 37

 <xs:extension base="xs:string"> 38

 <xs:attribute ref="xml:lang" use="optional"/> 39

 </xs:extension> 40

 </xs:simpleContent> 41

 </xs:complexType> 42

</xs:schema>43

ISO/IEC 29500-2:201x(E)

90 ©ISO/IEC 201x – All rights reserved

C.4 Digital Signature XML Signature Markup

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/digital-signature" 1

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/digital-signature" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xsd:element name="SignatureTime" type="CT_SignatureTime"/> 5

 <xsd:element name="RelationshipReference" type="CT_RelationshipReference"/> 6

 <xsd:element name="RelationshipsGroupReference" type="CT_RelationshipsGroupReference"/> 7

 <xsd:complexType name="CT_SignatureTime"> 8

 <xsd:sequence> 9

 <xsd:element name="Format" type="ST_Format"/> 10

 <xsd:element name="Value" type="ST_Value"/> 11

</xsd:sequence> 12

 </xsd:complexType> 13

 <xsd:complexType name="CT_RelationshipReference"> 14

 <xsd:simpleContent> 15

 <xsd:extension base="xsd:string"> 16

 <xsd:attribute name="SourceId" type="xsd:string" use="required"/> 17

 </xsd:extension> 18

 </xsd:simpleContent> 19

 </xsd:complexType> 20

 <xsd:complexType name="CT_RelationshipsGroupReference"> 21

 <xsd:simpleContent> 22

 <xsd:extension base="xsd:string"> 23

 <xsd:attribute name="SourceType" type="xsd:anyURI" use="required"/> 24

 </xsd:extension> 25

 </xsd:simpleContent> 26

 </xsd:complexType> 27

 <xsd:simpleType name="ST_Format"> 28

 <xsd:restriction base="xsd:string"> 29

 <xsd:pattern value="(YYYY)|(YYYY-MM)|(YYYY-MM-DD)|(YYYY-MM-DDThh:mmTZD)|(YYYY-MM-30

DDThh:mm:ssTZD)|(YYYY-MM-DDThh:mm:ss.sTZD)"/> 31

 </xsd:restriction> 32

 </xsd:simpleType> 33

 <xsd:simpleType name="ST_Value"> 34

 <xsd:restriction base="xsd:string"> 35

 <xsd:pattern value="(([0-9][0-9][0-9][0-9]))|(([0-9][0-9][0-9][0-9])-((0[1-36

9])|(1(0|1|2))))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-37

9])|(3(0|1))))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-38

9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-39

9])|(5[0-9]))(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-40

9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-41

9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-42

9])|(4[0-9])|(5[0-9])):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-43

)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-44

9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-45

9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-46

9])|(5[0-9])):(((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))\.[0-9])(((\+|-47

)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-48

9])))|Z))"/> 49

 </xsd:restriction> 50

 </xsd:simpleType> 51

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 91

</xsd:schema> 52

C.5 Relationships Part

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/relationships" 1

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/relationships" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xsd:element name="Relationships" type="CT_Relationships"/> 5

 <xsd:element name="Relationship" type="CT_Relationship"/> 6

 <xsd:complexType name="CT_Relationships"> 7

 <xsd:sequence> 8

 <xsd:element ref="Relationship" minOccurs="0" maxOccurs="unbounded"/> 9

 </xsd:sequence> 10

 </xsd:complexType> 11

 <xsd:complexType name="CT_Relationship"> 12

 <xsd:simpleContent> 13

 <xsd:extension base="xsd:string"> 14

 <xsd:attribute name="TargetMode" type="ST_TargetMode" use="optional"/> 15

 <xsd:attribute name="Target" type="xsd:anyURI" use="required"/> 16

 <xsd:attribute name="Type" type="xsd:anyURI" use="required"/> 17

 <xsd:attribute name="Id" type="xsd:ID" use="required"/> 18

 </xsd:extension> 19

 </xsd:simpleContent> 20

 </xsd:complexType> 21

 <xsd:simpleType name="ST_TargetMode"> 22

 <xsd:restriction base="xsd:string"> 23

 <xsd:enumeration value="External"/> 24

 <xsd:enumeration value="Internal"/> 25

 </xsd:restriction> 26

 </xsd:simpleType> 27

</xsd:schema> 28

ISO/IEC 29500-2:201x(E)

92 ©ISO/IEC 201x – All rights reserved

Annex D
(informative)

Schemas - RELAX NG

This clause is informative.

D.1 Introduction

This Part of ISO/IEC 29500 includes a family of schemas defined using the RELAX NG syntax. The definitions of

these schemas follow below; they also reside in an accompanying file named

OpenPackagingConventions-RELAXNG.zip, which is distributed in electronic form.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML

Schema is the definitive version.

D.2 Content TypeMedia Types Stream

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/content-types" 2

 3

start = Types 4

Types = element Types { CT_Types } 5

Default = element Default { CT_Default } 6

Override = element Override { CT_Override } 7

CT_Types = (Default | Override)* 8

CT_Default = 9

 attribute Extension { ST_Extension }, 10

 attribute ContentType { ST_ContentType } 11

CT_Override = 12

 attribute ContentType { ST_ContentType }, 13

 attribute PartName { xsd:anyURI } 14

ST_ContentType = 15

 xsd:string { 16

 pattern = 17

 '(((([\p{IsBasicLatin}-[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))/((([\p{IsBasicLatin}-18

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))((\s+)*;(\s+)*(((([\p{IsBasicLatin}-19

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))=((([\p{IsBasicLatin}-20

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+)|("(([\p{IsLatin-1Supplement}\p{IsBasicLatin}-21

[\p{Cc}\x{127}"\n\r]]|(\s+))|(\\[\p{IsBasicLatin}]))*"))))*)' 22

 } 23

ST_Extension = 24

 xsd:string { 25

 pattern = 26

 "([!$&'\(\)*\+,:=]|(%[0-9a-fA-F][0-9a-fA-F])|[:@]|[a-zA-Z0-9\-_~])+" 27

 }28

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 93

D.3 Core Properties Part

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 2

namespace dc = "http://purl.org/dc/elements/1.1/" 3

namespace dcterms = "http://purl.org/dc/terms/" 4

namespace xsi = "http://www.w3.org/2001/XMLSchema-instance" 5

include "xml.rnc" 6

 7

start = coreProperties 8

coreProperties = element coreProperties { CT_CoreProperties } 9

CT_CoreProperties = 10

 element category { xsd:string }? 11

 & element contentStatus { xsd:string }? 12

 & element dcterms:created { 13

 attribute xsi:type { xsd:QName "dcterms:W3CDTF" }, xml_lang?, W3CDTF 14

 }? 15

 & element dc:creator { SimpleLiteral }? 16

 & element dc:description { SimpleLiteral }? 17

 & element dc:identifier { SimpleLiteral }? 18

 & element keywords { CT_Keywords }? 19

 & element dc:language { SimpleLiteral }? 20

 & element lastModifiedBy { xsd:string }? 21

 & element lastPrinted { xsd:dateTime }? 22

 & element dcterms:modified { 23

 attribute xsi:type { xsd:QName "dcterms:W3CDTF" }, xml_lang?, W3CDTF 24

 }? 25

 & element revision { xsd:string }? 26

 & element dc:subject { SimpleLiteral }? 27

 & element dc:title { SimpleLiteral }? 28

 & element version { xsd:string }? 29

CT_Keywords = 30

 mixed { 31

 xml_lang?, 32

 element value { CT_Keyword }* 33

 } 34

CT_Keyword = xsd:string, xml_lang? 35

SimpleLiteral = xml_lang?, xsd:string 36

W3CDTF = xsd:gYear | xsd:gYearMonth | xsd:date | xsd:dateTime37

D.4 Digital Signature XML Signature Markup

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/digital-signature" 2

namespace ds = "http://www.w3.org/2000/09/xmldsig#" 3

 4

include "xmldsig-core-schema.rnc" { 5

 6

SignaturePropertyType = 7

 SignatureTime, 8

 attribute Id { xsd:ID }?, 9

 attribute Target { xsd:anyURI } 10

 11

ISO/IEC 29500-2:201x(E)

94 ©ISO/IEC 201x – All rights reserved

TransformType = 12

 element ds:XPath { xsd:string }?, 13

 (RelationshipReference | RelationshipsGroupReference)*, 14

 attribute Algorithm { xsd:anyURI } 15

} 16

 17

SignatureTime = element SignatureTime { CT_SignatureTime } 18

RelationshipReference = 19

 element RelationshipReference { CT_RelationshipReference } 20

RelationshipsGroupReference = 21

 element RelationshipsGroupReference { CT_RelationshipsGroupReference } 22

CT_SignatureTime = 23

 element Format { ST_Format }, 24

 element Value { ST_Value } 25

CT_RelationshipReference = 26

 xsd:string, 27

 attribute SourceId { xsd:string } 28

CT_RelationshipsGroupReference = 29

 xsd:string, 30

 attribute SourceType { xsd:anyURI } 31

ST_Format = 32

 xsd:string { 33

 pattern = 34

 "(YYYY)|(YYYY-MM)|(YYYY-MM-DD)|(YYYY-MM-DDThh:mmTZD)|(YYYY-MM-DDThh:mm:ssTZD)|(YYYY-MM-35

DDThh:mm:ss.sTZD)" 36

 } 37

ST_Value = 38

 xsd:string { 39

 pattern = 40

 "(([0-9][0-9][0-9][0-9]))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2))))|(([0-9][0-9][0-9][0-41

9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1))))|(([0-9][0-9][0-9][0-9])-((0[1-42

9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-43

9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-44

9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-45

((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-46

9])|(3[0-9])|(4[0-9])|(5[0-9])):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-)((0[0-47

9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-48

9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-49

9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])):(((0[0-9])|(1[0-9])|(2[0-50

9])|(3[0-9])|(4[0-9])|(5[0-9]))\.[0-9])(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-51

9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))" 52

 }53

D.5 Relationships Part

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/relationships" 2

 3

start = Relationships 4

Relationships = element Relationships { CT_Relationships } 5

Relationship = element Relationship { CT_Relationship } 6

CT_Relationships = Relationship* 7

CT_Relationship = 8

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 95

 xsd:string, 9

 attribute TargetMode { ST_TargetMode }?, 10

 attribute Target { xsd:anyURI }, 11

 attribute Type { xsd:anyURI }, 12

 attribute Id { xsd:ID } 13

ST_TargetMode = string "External" | string "Internal"14

D.6 Additional Resources

D.6.1 XML

xml_lang = attribute xml:lang { xsd:language | xsd:string "" } 1

xml_space = attribute xml:space { "default" | "preserve" } 2

xml_base = attribute xml:base { xsd:anyURI } 3

xml_id = attribute xml:id { xsd:ID } 4

xml_specialAttrs = xml_base?, xml_lang?, xml_space?, xml_id?5

D.6.2 XML Digital Signature Core

xmldsig-core-schema.rnc (a RELAX NG schema in the compact syntax) can be created from xmldsig-core-

schema.rng (a RELAX NG schema in the XML syntax), which is available at

http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng.

End of informative text.

http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng

ISO/IEC 29500-2:201x(E)

96 ©ISO/IEC 201x – All rights reserved

Annex E
(normative)

Standard Namespaces and Content
TypeMedia types

The namespaces available for use in a package are listed in Table E–1, Package-wide namespaces

Table E–1. Package-wide namespaces

Description Namespace URI

Content TypeMedia Types
stream

http://schemas.openxmlformats.org/package/2006/content-types

Core Properties http://schemas.openxmlformats.org/package/2006/metadata/core-
properties

Digital Signatures http://schemas.openxmlformats.org/package/2006/digital-signature

Relationships http://schemas.openxmlformats.org/package/2006/relationships

Markup Compatibility http://schemas.openxmlformats.org/markup-compatibility/2006

The content typemedia types available for use infor the parts defined in this specification a package are listed in

Table E–2, Package-wide media types

Table E–2. Package-wide content typemedia types

Description Content TypeMedia type

Core Properties part application/vnd.openxmlformats-package.core-properties+xml

Digital Signature Certificate
part

application/vnd.openxmlformats-package.digital-signature-
certificate

Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin

Digital Signature XML Signature
part

application/vnd.openxmlformats-package.digital-signature-
xmlsignature+xml

Relationships part application/vnd.openxmlformats-package.relationships+xml

Package implementers and format designers shall not create content typemedia types with parameters for the

package-specific parts defined in this Open Packaging specification and shall treat the presence of parameters in

these content typemedia types as an error. [M1.22]

Commented [JH61]: Should this be specified here, or just
reference Part 3?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 97

The relationship types available for use in a package are listed in Table E–3, Package-wide relationship types.

Table E–3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/signature

Digital Signature
Certificate

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/certificate

Digital Signature
Origin

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/origin

Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

ISO/IEC 29500-2:201x(E)

98 ©ISO/IEC 201x – All rights reserved

Annex F
(informative)

Physical Model Design Considerations

This annex is informative.

F.1 Introduction

The physical model defines the ways in which packages are produced and consumed. This model is based on

three components: a producer, a consumer, and a pipe between them.

Figure F–1. Components of the physical model

A producer is software or a device that writes packages. A consumer is software or a device that reads packages.

A device is hardware, such as a printer or scanner that performs a single function or set of functions. Data is

carried from the producer to the consumer by a pipe.

In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The

significant communication characteristics of this pipe are speed and request latency. For example, this

communication might occur across a process boundary or between a server and a desktop computer.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 99

In order to maximize performance, designers of physical package formats consider access style, layout style, and

communication style.

F.2 Access Styles

F.2.1 Introduction

The access style in which local access or networked access is conducted determines the simultaneity possible

between processing and input-output operations.

F.2.2 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without

sequentially processing the preceding parts of the package. For example a byte-range request. This is the most

common access style.

F.2.3 Streaming Consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.

Physical package formats should be designed to allow consumers to begin interpreting and processing the data

they receive before all of the bits of the package have been delivered through the pipe.

F.2.4 Streaming Creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the

parts that are to be written. For example, when an application begins to build a print spool file package, it might

not know how many pages the package contains. Likewise, a program that is generating a report might not know

initially how long the report is or how many pictures it has.

In order to support streaming creation, the package implementer should allow a producer to add parts after

other parts have already been added. A Consumer shall not require a producer to state how many parts they

might create when they start writing. The package implementer should allow a producer to begin writing the

contents of a part without knowing the ultimate length of the part.

F.2.5 Simultaneous Creation and Consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the

same time on a package. Because of the benefits that can be realized within pipelined architectures that use it,

the package implementer should support simultaneous creation and consumption in the physical package.

F.3 Layout Styles

F.3.1 Introduction

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in

one of two styles: simple ordering or interleaved ordering.

ISO/IEC 29500-2:201x(E)

100 ©ISO/IEC 201x – All rights reserved

F.3.2 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes

for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package

uses simple ordering, all of the bytes for each part are stored contiguously.

F.3.3 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.

For example, interleaved ordering improves performance for multi-media playback, where video and audio are

delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing

easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the

physical package. The package implementer might handle the internal representation of interleaving differently

in different physical models. Regardless of how the physical model handles interleaving, a part that is broken

into multiple pieces in the physical file is considered one logical part; the pieces themselves are not parts and

are not addressable.

F.4 Communication Styles

F.4.1 Introduction

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to

as the communication style. Communication can be based on sequential delivery of or random access to parts.

The communication style used depends on the capabilities of both the pipe and the physical package format.

F.4.2 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the.

Generally, all pipes support sequential delivery.

F.4.3 Random Access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes

are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order

to maximize performance, the package implementer should support random access in both the pipe and the

physical package. In the absence of this support, consumers need to wait until the parts they need are delivered

sequentially.

End of informative text.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 101

Annex G
(informative)

Guidelines for Meeting Conformance

This annex is informative.

[Drafting Note: Should we delete all tables this annex? (1) They add nothing new but merely duplicate

information, (2) they do not capture some requirements in the body, (3) they make the revision process difficult,

and (4) some columns are not about conformance. It was agreed to postpone this issue until we have a better

idea about the introduction of XAdES into OPC.]

G.1 Introduction

This annex summarizes best practices for producers and consumers implementing the Open Packaging

Conventions. It is intended as a convenience; the text in the referenced clause or subclause is considered

normative in all cases.

The top-level topics and their identifiers are described as follows:

1) Package Model requirements

2) Physical Packages requirements

3) ZIP Physical Mapping requirements

4) Core Properties requirements

5) Thumbnail requirements

6) Digital Signatures requirements

7) Pack URI requirements

Additionally, these tables identify, as does the referenced text, who is burdened with enforcing or supporting

the requirement:

G.2 Package Model

Table G–1. Package model conformance requirements

Commented [rcj62]:

ISO/IEC 29500-2:201x(E)

102 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.1 The package implementer shall
require a part name. Error!
Reference source not found.
Error! Reference source not
ound.

8.2, Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.2 The package implementer shall
require a media type and the
format designer shall specify
the media type.

8.2 × ×

M1.3 Error! Reference source not
ound. Error! Reference source
not found.Error! Reference
source not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.4 Error! Reference source not
ound. Error! Reference source
not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.5 Error! Reference source not
ound.Error! Reference source
not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.6 Error! Reference source not
ound.Error! Reference source
not found..

Error!
eference
source not
found., Error!
Reference
source not
found.

×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 103

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.7 Error! Reference source not
ound.Error! Reference source
not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.8 Error! Reference source not
ound.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.9 Error! Reference source not
ound.Error! Reference source
not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.10 Error! Reference source not
ound. Error! Reference source
not found.

Error!
eference
source not
found., Error!
Reference
source not
found.

×

M1.11 Error! Reference source not
ound.

0 ×

M1.12 Error! Reference source not
ound.

Error!
eference
source not
found.

×

M1.13 0 × ×

M1.14 0 × ×

M1.15 0 × ×

ISO/IEC 29500-2:201x(E)

104 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.16 If the package implementer
specifies a growth hint, it is set
when a part is created, and the
package implementer shall not
change the growth hint after
the part has been created.

8.2.4 × ×

M1.17 XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,
that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.2.5 ×

M1.18 DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

8.2.5 ×

M1.19 If the XML content contains the
Markup Compatibility
namespace, as described in
Part 3, it shall be processed by
the package implementer to
remove Markup Compatibility
elements and attributes,
ignorable namespace
declarations, and ignored
elements and attributes before
applying subsequent validation
rules.

8.2.5 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 105

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20 XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content
shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

8.2.5 ×

M1.21 XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.2.5 ×

M1.22
Package implementers and
format designers shall not
create media types with
parameters for the package-
specific parts defined in this
Open Packaging specification
and shall treat the presence of
parameters in these media
types as an error.

Annex E × ×

M1.23 Error! Reference source not
ound.

8.3 ×

M1.24 Error! Reference source not
ound.Error! Reference source
not found.

8.3 ×

ISO/IEC 29500-2:201x(E)

106 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.25 The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

8.5.2 ×

M1.26 After the removal of any
extensions using the
mechanisms in ISO/IEC 29500-
3, a Relationships part shall be
a schema-valid XML document
against opc-relationships.xsd.
The package implementer shall
require that every Relationship
element has an Id attribute, the
value of which is unique within
the Relationships part, and that
the Id datatype is xsd:ID, the
value of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

8.5.3 ×

M1.27 The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a
Type.

8.5.3.3 × ×

M1.28 The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URI or a
relative reference.

8.5.3.3 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 107

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.29 When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

8.5.3.3 ×

M1.30 The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the media type for a
Relationships part

8.5.4 ×

M1.31

Consumers shall process
relationship markup in a
manner that conforms to
Part 3.

8.5.5 × ×

M1.32 If a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

8.5.3.3 ×

M1.33 Error! Reference source not
ound.

Error!
eference
source not
found.

 × ×

M1.34 Error! Reference source not
ound.

Error!
eference
source not
found.

 ×

Table G–2. Package model optional requirements

ISO/IEC 29500-2:201x(E)

108 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O1.1 The package implementer might
allow a growth hint to be provided
by a producer.

8.2, 8.2.4 ×

O1.2 Format designers might restrict the
usage of parameters for media
types.

0 ×

O1.3 The package implementer might
ignore the growth hint or adhere
only loosely to it when specifying
the physical mapping.

8.2.4 ×

O1.4 Error! Reference source not found. 8.3 × × ×

O1.5 The package implementer might
allow a TargetMode to be provided
by a producer.

8.5.3.3 ×

O1.6 A format designer might allow
fragment identifiers in the value of
the Target attribute of the
Relationship element.

8.5.3.3 ×

O1.7 Producers might generate
relationship markup that uses the
versioning and extensibility
mechanisms defined in Part 3 to
incorporate elements and
attributes drawn from other XML
namespaces.

8.5.5 ×

G.3 Physical Packages

Table G–3. Physical packages conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.1 The Media Types stream shall not
be mapped to a part by the package
implementer.

9.2.3.1 ×A

M2.2 The package implementer shall
define a physical package format
with a mapping for the following
required components.

9.2.2 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 109

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.3 The package implementer shall
define a format mapping with a
mechanism for associating media
types with parts.

9.2.3.1 ×

M2.4 For all parts of the package other
than relationships parts (§8.5.2), the
Media Types stream shall specify
either:
One matching Default element, or
One matching Override element, or
Both a matching Default element
and a matching Override element,
in which case, the Override element
takes precedence.

9.2.3.2 ×A

M2.5 The package implementer shall
require that there not be more than
one Default element for any given
extension, and there not be more
than one Override element for any
given part name.

9.2.3.2 ×A

M2.6 The package implementer shall
require a non-empty extension in a
Default element. The package
implementer shall require a media
type in a Default element and the
format designer shall specify the
media type.

9.2.3.2.3 ×A ×A

M2.7 The package implementer shall
require a media type and the format
designer shall specify the media
type in an Override element. The
package implementer shall require a
part name.

9.2.3.2.4 ×A ×A

M2.8 When adding a new part to a
package, the package implementer
shall ensure that a media type for
that part is specified in the Media
Types stream; the package
implementer shall perform the steps
described in §9.2.3.3.

9.2.3.3 ×A

M2.9 To get the media type of a part, the
package implementer shall perform
the steps described in §9.2.3.4.

9.2.3.4 ×A

ISO/IEC 29500-2:201x(E)

110 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.10 The package implementer shall not
use the versioning and extensibility
mechanisms defined in Part 3 to
incorporate elements and attributes
drawn from other XML-namespaces
into the Media Types stream
markup.

9.2.3.5 ×A

M2.11 The package implementer shall not
mix interleaving and non-
interleaving for an individual part.

9.2.5 ×B

M2.12 The package implementer shall
compare prefix names as case-
insensitive ASCII strings.

9.2.4.2 ×

M2.13 The package implementer shall
compare suffix names as case-
insensitive ASCII strings.

9.2.4.2 ×B

M2.14 The package implementer shall not
allow packages that contain
equivalent logical item names.

9.2.4.2 ×

M2.15 The package implementer shall not
allow packages that contain logical
items with equivalent prefix names
and with equal piece numbers,
where piece numbers are treated as
integer decimal values.

9.2.4.2 ×B

M2.16 The package implementer shall not
map logical items to parts if the
logical item names violate the part
naming rules.

9.2.4.5 ×

M2.17 The package implementer shall
consider naming collisions within
the set of part names mapped from
logical item names to be an error.

9.2.4.5 ×

M2.18 When interleaved, a package
implementer shall represent a part
as one or more pieces, using the
method described in §9.2.5.

9.3.2 ×B

Notes:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 111

A: Only relevant if using the content typemedia type mapping strategy specified in the Open Packaging

Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table G–4. Physical packages recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.1 Some physical package
formats have a native
mechanism for associating
media types with parts. For
such packages, the package
implementer should use the
native mechanism to map part
media types to parts.

9.2.3.1 ×

S2.2 If no native method of
mapping a content typemedia
type to a part exists, the
package should include an
XML stream called the Media
Types stream

9.2.3.1 ×

S2.3 If the package is intended for
streaming consumption:
The package implementer
should not allow Default
elements; consequently, there
should be one Override
element for each part in the
package.
The format producer should
write the Override elements
to the package, so they
appear before the part to
which they correspond, or in
close proximity to the part to
which they correspond.

9.2.3.2 ×A ×A

ISO/IEC 29500-2:201x(E)

112 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.4 The package implementer
should use the mechanism
described in this Open
Packaging specification to
allow interleaving when
mapping to the physical
package for layout scenarios
that support streaming
consumption.

9.2.5 ×B

S2.5 The package implementer
should store pieces in their
natural order for optimal
efficiency.

9.2.5 ×B

Notes:

A: Only relevant if using the content typemedia type mapping strategy specified in the Open Packaging

Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table G–5. Physical packages optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.1 The format designer specifies
whether that format might use
interleaving.

9.2.5 ×

O2.2 Optional. The package implementer
might provide a physical mapping for
a growth hint that might be specified
by a producer.

9.2.2 ×

O2.3 Package implementers might use the
common mapping solutions defined
in this Open Packaging specification.

9.2 ×

O2.4 Package producers can use pre-
defined Default elements to reduce
the number of Override elements on
a part, but are not required to do so.

9.2.3.2 ×A

O2.5 The package implementer can define
Default media type mappings even
though no parts use them.

9.2.3.2 ×A

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 113

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.6 The package implementer might
create a physical package containing
interleaved parts and non-interleaved
parts.

9.2.5 ×

O2.7 The package implementer might
allow a package that contains logical
item names and complete sequences
of logical item names that cannot be
mapped to a part name because the
logical item name does not follow the
part naming grammar or the logical
item does not have an associated
media type.

9.2.4.5 ×B

Notes:

A: Only relevant if using the content typemedia type mapping strategy specified in the Open Packaging

Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

G.4 ZIP Physical Mapping

The requirements in Table G–6, Table G–7, and Table G–8 are only relevant when mapping to the ZIP physical

package format.

Table G–6. ZIP physical mapping conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.1 A package implementer shall store a
non-interleaved part as a single ZIP
item.

9.3.2 ×

M3.2 ZIP item names are case-sensitive
ASCII strings. Package implementers
shall create ZIP item names that
conform to ZIP archive-file name
grammar.

9.3.3 ×

M3.3 Package implementers shall create
item names that are unique within a
given archive.

9.3.3 ×

ISO/IEC 29500-2:201x(E)

114 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.4 To map part names to ZIP item
names the package implementer
shall perform, in order, the steps
described in §9.3.4.

9.3.4 ×

M3.5 The package implementer shall not
map a logical item name or
complete sequence of logical item
names sharing a common prefix to a
part name if the logical item prefix
has no corresponding media type.

9.3.4 ×

M3.6 To map ZIP item names to part
names, the package implementer
shall perform, in order, the steps
described in §9.3.5.

9.3.5 ×

M3.7 The package implementer shall map
all ZIP items to parts except MS-DOS
ZIP items, as defined in the ZIP
specification, that are not MS-DOS
files.

9.3.6 ×

M3.8 The package implementer shall map
all ZIP items to parts except MS-DOS
ZIP items, as defined in the ZIP
specification, that are not MS-DOS
files. [M3.7]
[Note: The ZIP specification
specifies that ZIP items recognized
as MS-DOS files are those with a
“version made by” field and an
“external file attributes” field in the
“file header” record in the central
directory that have a value of 0. end
note]
In ZIP archives, the package
implementer shall not exceed
65,535 bytes for the combined
length of the item name, Extra field,
and Comment fields.

9.3.6 ×

M3.9 ZIP-based packages shall not include
encryption as described in the ZIP
specification. Package implementers
shall enforce this restriction.

9.3.6 ×

M3.10 9.3.7 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 115

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.11 Package implementers shall not
map logical item name(s) mapped to
the Media Types stream in a ZIP
archive to a part name.

9.3.7 ×

M3.13 Several substantial conditions that
represent a package unfit for
streaming consumption might be
detected mid-processing by a
streaming package implementer,
described in §9.3.9. When any of
these conditions are detected, the
streaming package implementer
shall generate an error, regardless
of any processing that has already
taken place. Package implementers
shall not generate a package
containing any of these conditions
when generating a package
intended for streaming
consumption.

9.3.9 ×

M3.14 For a ZIP archive to be a physical
layer for a package, the package
implementer shall ensure that the
ZIP archive holds equal values in the
appropriate fields of every File
Header within the Central Directory
and the corresponding Local File
Header and Data Descriptor pair,
when the Data Descriptor exists,
except as described in Table B–5 for
bit 3 of general-purpose bit flags.

Annex B ×

M3.15 During consumption of a package, a
"Yes" value for a field in a table in
Annex B indicates a package
implementer shall support reading
the ZIP archive containing this
record or field, however, support
might mean ignoring.

Annex B ×

M3.16 During production of a package, a
“Yes” value for a field in a table in
Annex B indicates that the package
implementer shall write out this
record or field.

Annex B ×

ISO/IEC 29500-2:201x(E)

116 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.17 A “No” value for a field in a table in
Annex B indicates the package
implementer should not use this
record or field.

Annex B ×

M3.18 A “Partially, details below” value for
a record in a table in Annex B
indicates that the record contains
fields that might not be supported
by package implementers during
production or consumption. See the
details in the corresponding table to
determine requirements.

Annex B ×

M3.19 The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex B ×

M3.20 The package implementer shall
ensure that all 64-bit stream record
sizes and offsets have the high-
order bit = 0.

Annex B ×

M3.21 The package implementer shall
ensure that all fields that contain
“number of entries” do not exceed
2,147,483,647.

Annex B x

Notes:

A: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table G–7. ZIP physical mapping recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.1 Package implementers should restrict
part naming to accommodate file
system limitations when naming
parts to be stored as ZIP items.

9.3.6 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 117

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.2 If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that
represents the first piece of the part.

9.3.8 ×

Table G–8. ZIP physical mapping optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O3.1 A package implementer might
intentionally order the sequence of
ZIP items in the archive to enable an
efficient organization of the part data
in order to achieve correct and
optimal interleaving.

9.3.2 ×

O3.2 An “Optional” value for a record in a
table in Annex B indicates that
package implementers might write
this record during production.

Annex B ×

G.5 Core Properties

The requirements in Table G–9 are only relevant if using the core properties feature.

Table G–9. Core properties conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.1 The format designer shall specify
and the format producer shall
create at most one core properties
relationship for a package. A format
consumer shall consider more than
one core properties relationship for
a package to be an error. If present,
the relationship shall target the Core
Properties part.

10.3 × × ×

ISO/IEC 29500-2:201x(E)

118 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.2 The format designer shall not
specify and the format producer
shall not create Core Properties that
use the Markup Compatibility
namespace as defined in Annex E. A
format consumer shall consider the
use of the Markup Compatibility
namespace to be an error.

10.4 × × ×

M4.3 Producers shall not create a
document element that contains
refinements to the Dublin Core
elements, except for the two
specified in the schema:
<dcterms:created> and
<dcterms:modified>. Consumers
shall consider a document element
that violates this constraint to be an
error.

10.5 × ×

M4.4 Producers shall not create a
document element that contains the
xml:lang attribute at any other
location than on the keywords or
value elements. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.5 × ×

M4.5 Producers shall not create a
document element that contains the
xsi:type attribute, except for a
<dcterms:created> or
<dcterms:modified> element where
the xsi:type attribute shall be
present and shall hold the value
dcterms:W3CDTF, where dcterms is
the namespace prefix of the Dublin
Core namespace. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.5 × ×

G.6 Thumbnail

The requirements in Table G–10 and Table G–11 are only relevant if using the thumbnail feature.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 119

Table G–10. Thumbnail conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M5.1 The format designer shall specify
thumbnail parts that are identified
by either a part relationship or a
package relationship. The producer
shall build the package accordingly.

11 × ×

Table G–11. Thumbnail optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O5.1 The format designer might allow
images, called thumbnails, to be
used to help end-users identify parts
of a package or a package as a
whole. These images can be
generated by the producer and
stored as parts.

11 × ×

G.7 Digital Signatures

The requirements in Table G–12, Table G–13, and Table G–14 are only relevant if using the digital signatures

feature.

Table G–12. Digital Signatures conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.1 Zero or one Digital Signature Origin
part shall exist in a package and it
shall be targeted from the package
root using the well-defined
relationship type specified in
Annex E.

12.3.2 ×

M6.2 This part shall exist if the package
contains any Digital Signature XML
Signature parts,

12.3.2 ×

M6.3 12.3.2 × ×

ISO/IEC 29500-2:201x(E)

120 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.4 If the certificate is represented as a
separate part within the package,
that certificate shall be the target
of a Digital Signature Certificate
relationship, as specified in Annex
E, from the appropriate Digital
Signature XML Signature part .

0 × ×

M6.5 Reference elements within a
SignedInfo element shall
reference elements only within the
same Signature element.
Reference elements within a
SignedInfo element shall not
reference any resources outside
the same Signature element .

12.3.5.2 × ×

M6.6 Packages shall not contain
references to a package-specific
Object element that contains a
transform other than a
canonicalization transform.

12.3.5.2 × ×

M6.7 The Signature element shall
contain only one package-specific
Object element.

12.3.5.2 × ×

M6.8 Package-specific Object elements
shall contain exactly one Manifest
element and exactly one
SignatureProperties element.
[Note: This SignatureProperties
element may contain multiple
SignatureProperty elements. end
note] Package-specific Object
elements shall not contain other
types of elements.

12.3.5.2 × ×

M6.9 Reference elements within a
Manifest element shall reference
with their URI attributes only parts
within the package.

12.3.5.2 × ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 121

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.10 Relative references to these local
parts shall have query components
that specify the part media type as
described in §12.3.5.7. The relative
reference excluding the query
component shall conform to the
part name grammar.

12.3.5.2 × ×

M6.11 Reference elements shall have
query components that specify in a
case-sensitive manner the media
type of the referenced part.

12.3.5.2 × ×

M6.12 Reference elements within a
Manifest element shall not contain
transforms other than the
canonicalization transform and
relationships transform.

12.3.5.2 × ×

M6.13 If an optional relationships
transform is used, it shall be
followed by a canonicalization
transform.

12.3.5.2 × ×

M6.14 Exactly one SignatureProperty
element with the Id attribute value
set to idSignatureTime shall exist
for a given signature. The Target
attribute value of this element
shall be either empty or contain a
fragment reference to the value of
the Id attribute of the root
Signature element. A
SignatureProperty element shall
contain exactly one
SignatureTime child element.

12.3.5.2 × ×

M6.15 A Signature element shall contain
exactly one local-data, package-
specific Object element and zero
or more application-defined Object
elements.

12.3.5.3 × ×

M6.16 A SignedInfo element shall contain
exactly one reference to the
package-specific Object element.

12.3.5.4 × ×

M6.17 RSA-SHA1 algorithms shall be used. 12.3.5.6 × ×

ISO/IEC 29500-2:201x(E)

122 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.18 When the Reference element is a
child element of a Manifest
element, it shall contain a URI
attribute and that attribute shall
contain a part name without a
fragment identifier.

12.3.5.7 × ×

M6.19







12.3.5.8 × ×

M6.20 Such elements shall contain XML-
compliant data.

12.3.5.13.2 × ×

M6.21 The certificate embedded in the
Digital Signature XML Signature
part shall be used when it is
specified. The certificate
embedded in the Digital Signature
XML Signature part shall be used
when it is specified.

12.3.5.14 × ×

M6.22 Such a Manifest element shall not
reference any data outside of the
package.

12.3.5.15 × ×

M6.23 12.3.5.19 × ×

M6.24 12.3.5.20 × ×

M6.25 To sign a subset of relationships,
the package-specific Relationships
Transform shall be used.

12.3.5.22 × ×

M6.26 A canonicalization transform shall
immediately follow a Relationships
Transform.

12.3.5.22 × ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 123

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.27 When applying a relationships
transform for digital signatures,
the Remove all Relationship
elements that do not have either
an Id value that matches any
SourceId value or a Type value
that matches any SourceType
value, among the SourceId and
SourceType values specified in the
transform definition. Values shall
be compared as case-sensitive
Unicode strings.

12.3.5.23 × ×

M6.28 When signing Object element
data, package implementers shall
follow the generic reference
creation algorithm described
in §3.1 of the W3C
Recommendation “XML-Signature
Syntax and Processing”.

12.6 ×

M6.29 When validating digital signatures,
the media type and the digest
contained in each Reference
descendant element of the
SignedInfo element shall be
verified and the signature
calculated using the SignedInfo
element shall be validated.

12.7 ×

M6.30 Compare the generated digest
value against the DigestValue
element in the Reference element
of the SignedInfo element.
References are invalid if there is
any mismatch.

12.7 ×

M6.31 Streaming consumers that
maintain signatures shall be able
to cache the parts necessary for
detecting and processing
signatures.

12.7.2 ×

M6.32 The Markup Compatibility
namespace, as specified in Annex
E, shall not be used within the
package-specific Object element.

12.8.3 ×

ISO/IEC 29500-2:201x(E)

124 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.33 If an application allows for a single
part to contain information that
might not be fully understood by
all implementations, then the
format designer shall carefully
design the signing and verification
policies to account for the
possibility of different
implementations being used for
each action in the sequence of
content creation, content signing,
and signature verification.
Producers and consumers shall
account for this possibility in their
signing and verification processing.

12.8.3 × × ×

M6.34 Packages shall us only the
following canonicalization
methods:
XML Canonicalization (c14n)
XML Canonicalization with
Comments (c14n with comments)

12.3.5.5 × ×

M6.35 A producer shall not specify more
than one relationship transform
for a particular relationships part.
A consumer shall treat the
presence of more than one
relationship transform for a
particular relationships part as an
error.

12.3.5.22 × ×

Table G–13. Digital signatures recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.1 No content should exist in the Digital
Signature Origin part itself.

12.3.2 ×

S6.2 A Digital Signature Certificate part
should be the target of at least one
Digital Signature Certificate
relationship from a Digital Signature
XML Signature part.

0 ×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 125

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.3 For digital signatures, a SignedInfo
element should apply a
canonicalization transform.

12.3.5.5 × ×

S6.4 Canonicalization transforms should
also be used for references to parts
that hold XML documents.

12.3.5.5 × ×

S6.5 Reference elements within a
SignedInfo element should reference
an Object element.

12.3.5.2 ×

Table G–14. Digital signatures optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.1
12.812.9 Introduction

Format designers might allow a
package to include digital signatures
which

12 × ×

O6.2 and is optional otherwise. 12.3.2 ×

O6.4 Zero or more may exist in a package. 12.3.3 ×

O6.5 Alternatively, in lieu of using a
Digital Signature Certificate part, the
certificate may exist as a separate
part in the package, may be
embedded within the Digital
Signature XML Signature part itself,
or may not be included in the
package at all if certificate data is
known or can be obtained from a
local or remote certificate store.

0 ×

O6.6 The part containing the certificate
may be signed.

0 ×

O6.7 A Digital Signature Certificate part
may be used to create more than
one signature.

0 ×

ISO/IEC 29500-2:201x(E)

126 ©ISO/IEC 201x – All rights reserved

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.8 The format designer might permit
one or more application-defined
Object elements. If allowed by the
format designer, signatures may
contain one or more application-
defined Object elements.

12.3.5.13.2 × ×

O6.9 Format designers might not apply
package-specific restrictions
regarding URIs and Transform
elements to application-defined
Object elements.

12.3.5.13.2 × ×

O6.10
Format designers might permit
producers to sign individual
relationships in a package or the
Relationships part as a whole.

12.3.5.22 × ×

O6.11 The relationships XML might contain
content from several namespaces,
along with versioning instructions as
defined in Part 3, “Markup
Compatibility and Extensibility”.

12.3.5.23 ×

O6.12 Format designers might specify an
application-defined package part
format that allows for the
embedding of versioned or
extended content that might not be
fully understood by all present and
future implementations. Producers
might create such embedded
versioned or extended content and
consumers might encounter such
content.

12.8.3 × × ×

G.8 Pack URI

Table G–15. Pack URI conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.1 Error! Reference source not found. Error!
eference
source
not
found.

×

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 127

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.2 Error! Reference source not found. Error!
eference
source
not
found.

×

M7.3 Error! Reference source not found. Error!
eference
source
not
found.

×

M7.4 Error! Reference source not found. Error!
eference
source
not
found.

×

Table G–16. Pack URI optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O7.1 Error! Reference source not found. Error!
eference
source
not found.

 ×

End of informative text.

ISO/IEC 29500-2:201x(E)

128 ©ISO/IEC 201x – All rights reserved

Annex H
(informative)

Differences Between ISO/IEC 29500 and
ECMA-376:2006

This annex is informative.

H.1 Introduction

This annex documents the syntactic differences between the versions of the Open Packaging Specification

defined in ISO/IEC 29500 and ECMA-376:2006.

H.2 XML Elements

The following XML elements are included in ISO/IEC 29500 but are not included in ECMA-376:2006:

 The value element (in the Core Properties Part schema in §C.3)

The following XML elements are included in ECMA-376:2006 but are not included in ISO/IEC 29500:2011:

 The contentType element (in the Core Properties Part schema in §C.3)

H.3 XML Attributes

No changes.

H.4 XML Enumeration Values

No changes.

H.5 XML Simple Types

No changes.

End of informative text.

