

ISO/IEC 29500-2:201x

 Office Open XML File Formats — Open Packaging

Conventions

Working Draft WD3.6

2018-10-02

This document was produced for a public review that runs from

2018-10-02 through 2019-02-01.

Reviewer Instructions:

1. Please report each new issue on the following site: (https://github.com/sc34wg4/opcRevision/issues) as a

separate entry whose title starts with the relevant document clause number. For example, “8.5.2.1,

Relationships Part: Problem with …”

2. Before creating a new issue check to see if one like it has already been created, and if so, add to that.

3. This document contains a number of Comments starting with “Attention Reviewers:” for which we’d

especially like feedback.

4. Following these instructions is rationale as why this specification is being revised.

5. On 2018-11-01 at 13:00 GMT, there will be a 1-hour Zoom-based teleconference for reviewers to ask

questions regarding this specification.

You may join from PC, Mac, Linux, iOS, or Android: https://zoom.us/j/766743426

Or iPhone one tap:

 USA: + 14086380986 ,, 766743426 # or + 16465588665 ,, 766743426 #

Or phone:

 Dial:

 US: +1 408 638 0986 or +1 646 558 8665

 Italy: +39 069 480 6488 or +39 069 926 8001

 Canada: +1 647 558 0588

 Czech Republic: +420 2 2888 2388 or +420 5 3889 0161

https://github.com/sc34wg4/opcRevision/issues
https://zoom.us/j/766743426

 France: +33 (0) 1 8288 0188 or +33 (0) 7 5678 4048

 UK: +44 (0) 20 3051 2874 or +44 (0) 20 3695 0088

 Korea: +82 (0) 2 6022 2322

 Japan: + 81 (0) 3 4578 1488 or + 81 (0) 524 564 439

 Germany: +49 (0) 30 3080 6188 or +49 (0) 30 5679 5800

 Meeting ID: 766 743 426

 International number available: https: //zoom.us/u/ad6y0GWfjE

6. Any other announcements about this public review can be found as issues on the GitHub site with a subject

of the form, ‘ANNOUNCEMENT: …’.

http://zoom.us/u/ad6y0GWfjE

Rationale for the OPC Revision

2018-08-15

MURATA Makoto (WG4 convenor)

1. Part names, references, pack URIs, base URIs, resolution

of relative references, and non-ASCII characters

The biggest motivation for revising OPC is to address issues around part names, references,

pack URIs, base URIs, resolution of relative references, and non-ASCII characters.

Numbers/Preview/QuickLook of Apple did have a bug (see this bug report for openpyxl) due to

these issues.

1.1 Defect Reports

09-

0280

OPC: Non-ASCII

characters in Part

Names

Clause 4 and Annex A disallows non-ASCII characters in

part names, while 9.1.1.1 allows them.

09-

0283

OPC:

Inconsistencies

between Clause 9.1

and Annex A

There are duplications in §9.1 and §A. Furthermore,

the terminology in §9.1 and that in §A are slightly

different. For example, "Part IRI" and "Part URI" in §9.1

are never used in §A.

09-

0284

OPC: part-URI and

part-IRI grammar

productions

It is not clear where in the BNFs in RFC 3986, RFC 3987,

or Appendix A the non-terminals part-URI and part-IRI

occur.

09-

0285

OPC: Use of Terms

“Part URI” and

“Part IRI”

The term "Part IRI" is very misleading. It sounds like a

particular type of IRI, but it actually means those parts of

IRIs which specify OPC part names. Likewise, the term

"Part URI" is also misleading.

Commented [MM1]: This rationale will be removed before final
publication.

https://bitbucket.org/openpyxl/openpyxl/issues/677/cant-read-multi-sheet-file-in-macos
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0280.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0280.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0283.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0283.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0284.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0284.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0285.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0285.docx?cid=c8ba0861dc5e4adc

09-

0286

OPC: The syntax of

"references"

The syntax of "references" is never clearly stated. What

is a reference? Is it a part of relative LEIRI, IRI, or URI

references?

09-

0291

OPC: Use of term

"Unicode string"

It is not clear why the term "Unicode string" has to be

introduced here. Moreover, its syntax is quite unclear.

09-

0292

OPC: Space

characters in part

names

It is not clear whether the space character is allowed as

part of OPC part name.

09-

0293

OPC: pack URI

scheme

Although the pack URI scheme has been registered as a

provisional scheme at IANA, its definition appears in an

Internet Draft rather than an RFC. The latest Internet

Draft has expired in August 2009. Furthermore, the

registration of the pack scheme at IANA has been

changed from "provisional" to "historical" since the

Internet Draft mistakenly allowed ":" as part of an

authority.

10-

0015

OPC: Relationship

Markup

It is not clear how relative URIs (which are values of the

Target attribute) are resolved.

1.2 History

Harmonizing OPC with Web Addresses and ZIP, SC34/WG4 N0148 (2010-09)

This personal contribution by Murata studies the use of non-ASCII characters in OOXML, IETF

URI/IRI RFCs, and W3C LEIRI Note.

Improving Part 2 in reply to DRs, SC34/WG4 N0207 (2011-09)

This Japanese national body contribution studied relevant DRs including those listed above

and asserted that a revision is needed for addressing them.

https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0286.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0286.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0291.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0291.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0292.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0292.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0293.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2009/DR-09-0293.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2010/DR-10-0015.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2010/DR-10-0015.docx?cid=c8ba0861dc5e4adc
https://isotc.iso.org/livelink/livelink?func=ll&objId=16691699&objAction=Open&viewType=1
https://isotc.iso.org/livelink/livelink?func=ll&objId=16688470&objAction=Open&viewType=1

Minutes of the Bellevue WG4 meeting (2013-06-17/20)

In the Bellevue meeting (2013-06-17/20), WG4 extensively discussed these DRs and even

studied MS Office and .Net implementations. Chris Rae, John Haug, Jim Thatcher, and original

OPC designers were involved in this discussion. The current OPC draft is based on consensus in

this meeting.

1.3 Difficulties

Why is this topic so hard? There are several reasons:

• RFC 3986, RFC 3987, and WHATWG URL Spec are not as good as we hope.

• Relative references in non-Relationships parts and those in Relationships parts need

different base URIs (when the target mode is not external).

• OOXML documents and XPS documents use different conventions for referencing parts.

• MS Office and .Net exhibit different behaviors.

• The first edition of ISO/IEC 29500-2 specifies behaviors different from any of those

mentioned above.

• Non-ASCII characters were introduced after the DIS ballot in a hurry.

1.4 Solutions and Remaining Issues

WG4 has addressed most of the problems identified by the above DRs by thoroughly rewriting

the clause for the Abstract Package Model. In particular, 1) a new subclause "Resolving Relative

References" has been added; 2) part Relationship parts and package Relationship parts are

distinguished; 3) base IRIs are clearly defined for part Relationship parts and package

Relationship parts depending on the target mode; 4) Pack URIs are defined in Clause 8 rather

than an annex, and 5) Annex A is made informative.

However, DR 09-0293 requires further work at IANA after the publication of the revised OPC.

2. Addressing conformance issues (leftover from the BRM)

In the BRM, it was agreed that OPC conformance is purely syntactical. However, for the lack of

time, many requirements in OPC were not rewritten as requirements on data, as implied by this

https://isotc.iso.org/livelink/livelink?func=ll&objId=16682967&objAction=Open&viewType=1

sentence in the published 29500-2: “Conformance requirements written as requirements for

package implementers (e.g., M1.1) are document conformance requirements”.

2.1 Defect Reports

13-0002 OPC: Issues with Conformance Guidelines

14-0001 OPC: Annex H Cleanup

2.2 Solutions

Wherever possible, WG4 has rewritten requirements on programs as those on data.

The informative annex for summarizing guidelines for meeting conformance has been

dropped.

The clause for conformance was moved from Clause 2 to Clause 6, since ISO/IEC editing

directives require that Clause 2 be "Normative References".

3. Clarifications

3.1 Terminology

WG4 removed terms that are not used by any normative clauses and then reorganized the

remaining terms by subclauses.

3.2 Physical Package Model

The clause for physical packages has been renamed as "Clause 9 Physical Package Model".

Interleaving is introduced before logical item names. Percent-encoding and un-percent

encoding of non-ASCII characters are explicitly introduced in Subclause 9.3.

https://onedrive.live.com/view.aspx/Public%20Documents/2013/DR-13-0002.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2014/DR-14-0001.docx?cid=c8ba0861dc5e4adc

3.3 Core Properties

Diagrams are replaced with normative prose, which clearly specifies requirements.

3.4 Digital Signatures

As part of this revision, the addition of XAdES digital signatures was planned. However, WG4

finally decided that this revision does not introduce any new features. Lots of clarifications were

made though, as requested by DRs:

10-0043 OPC: Non-ambiguity of DC identifiers

10-0048 OPC: Processing model for handling ZIP encryption

11-0029 OPC: Do not copy text or schemas from W3C XML Signature

11-0030 OPC: Obsolete version of W3C XML Digital Signature 1.0

11-0031 OPC: Use official RELAX NG schemas from W3C

12-0001 OPC: Correct Spelling of “relationship part”

Note: The relationship type for digital signatures in MS Office documents and that in the

currently-published 29500-2 are different. The ongoing revision fixed this problem by updating

the relationship type.

4. Misc

The clause for acronyms and abbreviations was dropped since it does not make sense to for an

ISO/IEC standard to define "ISO" and "IEC".

Schemas are not incorporated but rather referenced by URI.

https://onedrive.live.com/view.aspx/Public%20Documents/2010/DR-10-0043.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2010/DR-10-0048.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2011/DR-11-0029.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2011/DR-11-0030.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2011/DR-11-0031.docx?cid=c8ba0861dc5e4adc
https://onedrive.live.com/view.aspx/Public%20Documents/2012/DR-12-0001.docx?cid=c8ba0861dc5e4adc

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved ix

Contents

Foreword .. xiii

Introduction ... xv

1 Scope ... 1

2 Normative References ... 2

3 Terms and Definitions .. 4

4 Notational Conventions ... 8

5 General Description ... 9

6 Conformance ... 10

7 Overview ... 11

8 Abstract Package Model .. 12

8.1 General .. 12
8.2 Parts ... 12

 General .. 12
 Part Names .. 12
 Media types ... 14
 Growth Hint ... 14
 XML Usage ... 15

8.3 Part Addressing ... 15
 General .. 15
 Pack Scheme .. 16
 Resolving a Pack IRI to a Resource .. 17
 Composing a Pack IRI .. 18
 Equivalence ... 19

8.4 Resolving Relative References ... 19
 General .. 19
 Base IRIs .. 19
 Examples ... 20

8.5 Relationships ... 22
 General .. 22
 Relationships Part.. 23
 Relationship Markup ... 24
 Examples ... 26
 Support for Versioning and Extensibility ... 30

9 Physical Package Model ... 31

9.1 General .. 31
9.2 Physical Mapping Guidelines ... 31

 Using Features of Physical Formats .. 31
 Mapped Components .. 31
 Mapping Media Types to Parts ... 31

ISO/IEC 29500-2:201x(E)

x ©ISO/IEC 201x – All rights reserved

 Interleaving ... 35
 Mapping Part Names to Physical Package Item Names .. 37

9.3 Mapping to a ZIP file .. 39
 General .. 39
 Mapping Part Data .. 39
 ZIP Item Names ... 39
 Mapping Logical Item Names to ZIP Item Names ... 40
 Mapping ZIP Item Names to Logical Item Names ... 40
 ZIP Package Limitations ... 40
 Mapping the Media Types Stream .. 41
 Mapping the Growth Hint ... 41

10 Core Properties .. 42

10.1 General .. 42
10.2 Core Properties Part .. 43
10.3 Core Properties Markup .. 43

 General .. 43
 coreProperties element .. 44
 Core Property Elements .. 44

10.4 Support for Versioning and Extensibility ... 48

11 Thumbnails .. 49

12 Digital Signatures ... 50

12.1 General .. 50
12.2 Overview of OPC-Specific Restrictions and Extensions to “XML-Signature Syntax and Processing” 50
12.3 Choosing Content to Sign .. 50
12.4 Digital Signature Parts ... 50

 General .. 50
 Digital Signature Origin Part .. 51
 Digital Signature XML Signature Part .. 51
 Digital Signature Certificate Part ... 52

12.5 Digital Signature Markup ... 52
 General .. 52
 Signature Element ... 52
 SignedInfo Element ... 52
 CanonicalizationMethod Element ... 53
 Reference Element .. 53
 Transform Element .. 54
 RelationshipReference Element .. 54
 RelationshipsGroupReference Element .. 55
 DigestMethod Element ... 55

 Object Element .. 55
 Manifest Element .. 56
 SignatureProperty Element ... 56
 SignatureTime Element ... 56
 Format Element ... 56
 Value Element ... 56
 XPath Element ... 56

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved xi

12.6 Relationships Transform Algorithm ... 57
12.7 Digital Signature Example .. 58
12.8 Generating Signatures ... 60
12.9 Validating Signatures ... 61

Annex A (informative) Preprocessing for Generating Relative References .. 62

Annex B (normative) Constraints and Clarifications on the use of ZIP Features ... 64

B.1 General .. 64
B.2 Archive File Header Consistency ... 64
B.3 Data Descriptor Signature ... 64
B.4 Table Key ... 64

Annex C (normative) Schemas - W3C XML Schema .. 75

C.1 General .. 75
C.2 Media Types Stream .. 75
C.3 Core Properties Part .. 75
C.4 Digital Signature XML Signature Markup .. 75
C.5 Relationships Part .. 75

Annex D (informative) Schemas - RELAX NG .. 76

D.1 General .. 76
D.2 Media Types Stream .. 76
D.3 Core Properties Part .. 76
D.4 Digital Signature XML Signature Markup .. 76
D.5 Relationships Part .. 76
D.6 Additional Resources ... 76

D.6.1 XML .. 76
D.6.2 XML Digital Signature Core.. 77

Annex E (normative) Standard Namespaces and Media Types .. 78

Annex F (informative) Physical Package Model Design Considerations.. 80

F.1 General .. 80
F.2 Access Styles .. 81

F.2.1 General .. 81
F.2.2 Direct Access Consumption ... 81
F.2.3 Streaming Consumption .. 81
F.2.4 Streaming Creation ... 81
F.2.5 Simultaneous Creation and Consumption .. 81

F.3 Layout Styles .. 82
F.3.1 General .. 82
F.3.2 Simple Ordering... 82
F.3.3 Interleaved Ordering ... 82

F.4 Communication Styles ... 82
F.4.1 General .. 82
F.4.2 Sequential Delivery ... 82
F.4.3 Random Access.. 82

Annex G (informative) Differences Between ISO/IEC 29500-2 and ECMA-376:2006 .. 83

G.1 General .. 83

ISO/IEC 29500-2:201x(E)

xii ©ISO/IEC 201x – All rights reserved

G.2 XML Elements .. 83
G.3 XML Attributes... 83
G.4 XML Enumeration Values .. 83
G.5 XML Simple Types .. 83
G.6 Part Names .. 83

Annex H (informative) Package Example ... 84

H.1 General .. 84
H.2 Abstract Package ... 84
H.3 Physical Package .. 85

Bibliography ... 86

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved xiii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)

form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC

participate in the development of International Standards through technical committees established by the

respective organization to deal with particular fields of technical activity. ISO and IEC technical committees

collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,

in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have

established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29500-2 was prepared by ISO/IEC JTC 1, Information technology, Subcommittee SC 34, Document

description and processing languages.

This fourth edition cancels and replaces the third edition (ISO/IEC 29500-2:2012).

The major changes from the previous edition include:

• Removed the allowance for media type to be an empty string, as this conflicts with the definition of media

type in RFC 2046 and the existing regular expression defined in Annex C.

• The clause for conformance (Clause 6 in the preceding editions) was made Clause 2, as instructed by ISO/IEC

Directives Part 2.

• Clause 3 (Terms and Definitions) was revised by removing terms not used by any normative clauses and then

reorganized into groups.

• The subclause for diagram notes (§5.1 in the preceding editions) was removed, since core properties are

now defined by prose and schemas rather than diagrams.

• The clause for acronyms and abbreviations (Clause 6 in the preceding editions) was removed, since it does

not make sense for an ISO/IEC standard to define "ISO" and "IEC".

• Clause 8 (Abstract Package Model) has been completely rewritten. In particular, (1) pack URIs are defined in

this clause rather than in an annex, (2) a new subclause, "Resolving Relative References", was added; (3)

part Relationship parts and package Relationship parts are distinguished; and (4) base IRIs are clearly

defined.

ISO/IEC 29500-2:201x(E)

xiv ©ISO/IEC 201x – All rights reserved

• Clause 9 (Physical Package Model) has been slightly revised. Interleaving is introduced before logical item

names. Percent-encoding and un-percent encoding of non-ASCII characters are explicitly introduced in

Subclause 9.3.

• Clause 10 (Core Properties) has been rewritten by using prose and schemas rather than diagrams.

• Clause 12 (Digital signatures) has been thoroughly revised.

• Annex A has been made informative.

• The normative annex that define pack URIs (Annex B in the preceding editions) has been dropped.

• Annexes C and D (in the preceding editions, Annexes D and E) no longer defines schemas but reference

externally defined schemas.

• Guidelines for meeting conformance requirements (Annex H in the preceding editions) has been dropped.

• Dropped requirements around streaming consumption.

• Wherever possible, requirements on programs are rewritten as those on data.

• Annex H has been added to depict an example package.

• Indexes (Annex I in the preceding editions) has been deleted.

• Bibliography has been added.

The major changes in the third edition include:

• Added new terms byte, id, relationship type, source part, target part, and unique identifier, and removed the

term well-known part.

• Removed subclause §9.2.2, “Fragments”

• Added subclause §C.2, “Data Descriptor Signature”

• Applied changes to resolve numerous Defect Reports

There were no major changes in the second edition.

ISO/IEC 29500 consists of the following parts, under the general title Information technology — Document

description and processing languages — Office Open XML File Formats:

• Part 1: Fundamentals and Markup Language Reference

• Part 2: Open Packaging Conventions

• Part 3: Markup Compatibility and Extensibility

• Part 4: Transitional Migration Features

This Part of ISO/IEC 29500 includes two annexes (Annex C and Annex D) that refer to data files provided in

electronic form.

The document representation formats defined by this Part are different from the formats defined in the

corresponding Part of ECMA-376:2006. Some of the differences are reflected in schema changes, as shown in

Annex G of this Part.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved xv

Introduction

ISO/IEC 29500 specifies a family of XML schemas, collectively called Office Open XML, which define the XML

vocabularies for word-processing, spreadsheet, and presentation documents, as well as the packaging of

documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and

platforms, fostering interoperability across office productivity applications and line-of-business systems, as well

as to support and strengthen document archival and preservation, all in a way that is fully compatible with the

existing corpus of Microsoft Office documents.

INTERNATIONAL STANDARD ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 1

Information technology — Document description and

processing languages — Office Open XML File Formats

Part 2:

Open Packaging Conventions

1 Scope

This document defines a set of conventions for packaging one or more interrelated byte streams (parts) as a

single resource (package). These conventions are applicable not only to Office Open XML specifications as

described in Parts 1 and 4 of ISO/IEC 29500, but also to other markup specifications.

ISO/IEC 29500-2:201x(E)

2 ©ISO/IEC 201x – All rights reserved

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document

(including any amendments) applies.

American National Standards Institute, Coded Character Set — 7-bit American Standard Code for Information

Interchange, ANSI X3.4, 1986.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and

times.

ISO/IEC 9594-8 | ITU-T Rec. X.509, Information technology — Open Systems Interconnection — The Directory:

Public-key and attribute certificate frameworks.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

ISO/IEC 29500-3, Information technology — Document description and processing languages — Office Open XML

File Formats, Part 3: Markup Compatibility and Extensibility.

ISO 15836-1, Information and documentation — The Dublin Core metadata element set, Part 1: Core elements

Dublin Core Terms Namespace. http://purl.org/dc/terms/

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, The Internet Society, N. Freed

and N. Borenstein, 1996, http://www.ietf.org/rfc/rfc2046.txt.

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding,

and L. Masinter, 2005, http://www.ietf.org/rfc/rfc3986.txt.

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005,

http://www.ietf.org/rfc/rfc3987.txt.

RFC 5234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, D. Crocker and P.Overell,

(editors), 2008, http://www.ietf.org/rfc/rfc5234.txt.

RFC 7231 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, The Internet Society, R. Fielding and J.

Reschke, 2014, http://www.ietf.org/rfc/rfc7231.txt.

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html.

XML, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and François Yergeau (editors). Extensible

Markup Language (XML) 1.0, Fourth Edition. World Wide Web Consortium. 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/. [Implementers should be aware that a further correction of

Commented [MM2]: If an IS for DCMI terms is published before
29500-2 is finished, we can reference it here.

http://purl.org/dc/terms/
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc5234.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.unicode.org/standard/standard.html
http://www.w3.org/TR/2006/REC-xml-20060816/

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 3

the normative reference to XML to refer to the 5th Edition will be necessary when the related Reference

Specifications to which this International Standard also makes normative reference, and which also depend

upon XML, such as XSLT, XML Namespaces and XML Base, are all aligned with the 5th Edition.]

XML Namespaces, Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Namespaces in

XML 1.0 (Third Edition), 8 December 2009. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-xml-

names-20091208/

XML Base, W3C Recommendation, 28 January 2009. https://www.w3.org/TR/2009/REC-xmlbase-20090128/

XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004. https://www.w3.org/TR/xmlschema-

1/

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004. https://www.w3.org/TR/xmlschema-

2/

XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

ZIP File Format Specification from PKWARE, Inc., version 6.2.0 (2004), as specified in

http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt, hereinafter referred to as “ZIP Appnote”.

[Note: The supported compression algorithm is inferred from various tables in Annex B. end note]

http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
https://www.w3.org/TR/2009/REC-xmlbase-20090128/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt

ISO/IEC 29500-2:201x(E)

4 ©ISO/IEC 201x – All rights reserved

3 Terms and Definitions

For the purposes of this document, the following terms and definitions apply. Other terms are defined where

they appear in italic typeface. Terms explicitly defined in this Part of ISO/IEC 29500 are not to be presumed to

refer implicitly to similar terms defined elsewhere.

The terms base URI, relative reference, URI scheme, authority, fragment, path, query, and segment are used in

accordance with RFC 3986. The term media type is used in accordance with RFC 2046.

3.1 Basics

3.1.1

byte

sequence of 8 bits treated as a unit

3.1.2

stream

linearly ordered sequence of bytes

3.1.3

behavior

external appearance or action

3.1.4

behavior, implementation-defined

behavior, application-defined

unspecified behavior where each implementation shall document that behavior, thereby promoting

predictability and reproducibility within any given implementation

3.1.5

behavior, unspecified

behavior where this document imposes no requirements

3.2 Abstract package model

3.2.1

part

stream with a name, a MIME media type and associated common properties

3.2.2

package, abstract

logical entity that holds a collection of parts and relationships

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 5

3.2.3

relationship

a package relationship or a part relationship

3.2.4

relationship, package

connection from a package to a specific part in the same package, or to an external resource

3.2.5

relationship, part

connection from a part in a package to another part in the same package, or to an external resource

3.2.6

source

part or package from which a connection is established by a relationship

3.2.7

target

part or external resource to which a connection is established by a relationship

3.2.8

relationship type

absolute IRI for specifying the role of a relationship

3.2.9

Relationships part

part containing an XML representation of relationships

3.2.10

package model, abstract

abstract model that define abstract packages

3.2.11

growth hint

suggested number of bytes to reserve for a part to grow in place

3.2.12

pack scheme

URI scheme that allows IRIs to be used as a uniform mechanism for addressing parts within a package

3.2.13

pack IRI

IRI that conforms to the pack scheme

ISO/IEC 29500-2:201x(E)

6 ©ISO/IEC 201x – All rights reserved

3.2.14

part name

string that uniquely identifies a part within a package

3.2.15

relationship identifier

string that consists of XML name characters and uniquely identifies a relationship among those from the same

source

3.2.16

target mode

mode of resolution of relative references to targets

3.3 Physical package model

3.3.1

physical format

specific file format, or other persistence or transport mechanism

3.3.2

physical package

the result of a mapping an abstract package to a physical format

3.3.3

physical package model

a pair of a physical format and a mapping between the abstract package model and that physical format

3.3.4

piece

portion of a part

3.3.5

logical item

a non-interleaved part, a non-interleaved Media Types stream, a piece of an interleaved part, or a piece of an

interleaved Media Types stream

3.3.6

physical package item

an atomic set of data in a physical package

3.3.7

ZIP item

an atomic set of data in a ZIP file that becomes a file when the archive is uncompressed

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 7

3.3.8

ZIP file

ZIP file as defined in the ZIP file format specification

3.3.9

simple ordering

defined ordering for laying out the parts in a package in which all the bits comprising each part are stored

contiguously

3.3.10

interleaved ordering

defined ordering for laying out the parts in a package in which parts are broken into pieces and “mixed-in” with

pieces from other parts

3.4 Digital signature and thumbnail

3.4.1

signature policy

application-defined policy that specifies what configuration of parts and relationships shall or might be included

in a signature and what additional behaviors are required for generating and validating signatures following that

signature policy

3.4.2

thumbnail

small image that is a graphical representation of a part or the package as a whole

3.5 Implementations

3.5.1

package implementer

software that implements physical input-output operations on a package according to the requirements and

recommendations of this document

ISO/IEC 29500-2:201x(E)

8 ©ISO/IEC 201x – All rights reserved

4 Notational Conventions

The following typographical conventions are used in ISO/IEC 29500:

1) The first occurrence of a new term is written in italics. [Example: The text in this document is divided

into normative and informative categories. end example]

2) In each definition of a term in §3 (Terms and Definitions), the term is written in bold. [Example: behavior

— External appearance or action. end example]

3) The tag name of an XML element is written using a distinct style and typeface. [Example: The

bookmarkStart and bookmarkEnd elements specify … end example]

4) The name of an XML attribute is written using a distinct style and typeface. [Example: The dropCap

attribute specifies … end example]

5) The value of an XML attribute is written using a constant-width style. [Example: The attribute value of

auto specifies … end example]

6) The qualified or unqualified name of a simple type, complex type, or base datatype is written using a

distinct style and typeface. [Example: The possible values for this attribute are defined by the

ST_HexColor simple type. end example]

References to items in the Bibliography have the form “[n]”, where n is the Bibliography item number).

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 9

5 General Description

This document is divided into the following subdivisions:

1) Front matter;

2) Overview;

3) Main body;

4) Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes

provide additional information and summarize the information contained in this document.

Normative and informative sections of this document are marked accordingly.

Except for whole clauses or annexes that are identified as being informative, informative text that is contained

within normative text is indicated in the following ways:

1) [Example: code fragment, possibly with some narrative … end example]

2) [Note: narrative … end note]

3) [Rationale: narrative … end rationale]

ISO/IEC 29500-2:201x(E)

10 ©ISO/IEC 201x – All rights reserved

6 Conformance

A document is of conformance class OPC if it obeys all syntactic constraints specified in this Part of ISO/IEC

29500.

OPC conformance is purely syntactic.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 11

7 Overview

This clause is informative.

This document describes an abstract package model (§8) and a physical package model (§9) for the use of XML,

Unicode, ZIP, and other available technologies and specifications to organize the content and resources of a

document within a package. The package structure is intended to support the organization of constituent

resources for various applications and categories of content. An example package is shown in Annex H.

In addition, this document defines common services that can be included in a package, such as Core Properties

and Digital Signatures.

The abstract package model is a package abstraction that holds a collection of parts and relationships. The parts

are composed, processed, and persisted according to a set of rules. Parts can have relationships to other parts

or external resources, and the package as a whole can have relationships to parts it contains or to external

resources. The abstract package model specifies how the parts of a package are named and related. Parts have

MIME media types and are uniquely identified using the well-defined naming rules provided in this document.

The physical package model defines the mapping of the components of the abstract package model to the

features of a specific physical format, namely a ZIP file.

This document also describes certain features that might be supported in a package, including core properties

for package metadata, a thumbnail (term 3.4.2) for graphical representation of a package, and digital signatures

of package contents. Because this document might evolve, packages are designed to accommodate extensions

and to support compatibility goals in a limited way. The versioning and extensibility mechanisms described in

ISO/IEC 29500-3 support compatibility between software systems based on different versions of this document

while allowing package creators to make use of new or proprietary features.

This document specifies requirements for packages. Conformance requirements are identified throughout this

document. A formal conformance statement is given in §6.

End of informative text.

ISO/IEC 29500-2:201x(E)

12 ©ISO/IEC 201x – All rights reserved

8 Abstract Package Model

8.1 General

This subclause is informative.

This clause introduces abstract packages (term 3.2.2) in terms of parts (term 3.2.1, §8.2) and relationships

(term 3.2.3, §8.5). It also introduces the pack scheme (term 3.2.12, §8.3.2).

The purpose of the abstract package is to aggregate constituent components of a document (or other type of

content) into a single object. For example, an abstract package holding a document with a picture might contain

an XML markup part representing the document and another part representing the picture.

An example abstract package is shown in H.2.

End of informative text.

8.2 Parts

 General

This subclause is informative.

Parts (term 3.2.1) are analogous to a file in a file system or to a resource on an HTTP server.

End of informative text.

 Part Names

8.2.2.1 General

A part shall have a part name, which shall uniquely identify a part within an abstract package.

8.2.2.2 Syntax

A part name shall be a Unicode string that matches the following production rules in the ABNF syntax defined in

RFC 5234

part_name = 1*("/" isegment-nz)

isegment-nz = <isegment-nz, see RFC3987, Section 2.2>

and that further satisfies the constraints listed below, where an I18N segment is a Unicode string that matches

the non-terminal isegment-nz and percent-encoding represents a character by the percent character "%"

followed by two hexadecimal digits, as specified in RFC 3986

• No I18N segments shall contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 13

• No I18N segments shall contain percent-encoded characters that match the non-terminal iunreserved in RFC

3987.

• No I18N segments shall end with a dot (“.”) character.

The part name “/_rels/.rels” shall be reserved (§8.5.2.2). Part names in which the second-to-last I18N segment

is equivalent to ‘_rels’ and the final segment is equivalent to any string ending with ‘.rels’ shall be reserved

(§8.5.2.3).

[Example: The part name “/hello/world/doc.xml” contains three path segments, namely, “hello”, “world”, and

“doc.xml”. end example]

[Example: The part name “/é” contains a path segment “é” where é is 'LATIN SMALL LETTER E WITH ACUTE'

(U+00E9). end example]

[Note: Path segments are not explicitly represented as folders in the abstract package model, and no directory

of folders exists in the abstract package model. end note]

A package implementer is not required to support non-ASCII part names, although doing so is recommended.

8.2.2.3 Part Name Equivalence and Integrity in an Abstract Package

Equivalence of part names shall be determined by ASCII case-insensitive matching. Such matching compares a

sequence of code points as if all ASCII code points in the range 0x41–0x5A (A–Z) were mapped to the

corresponding code points in the range 0x61–0x7A (a–z). See Character Model for the World Wide Web: String

Matching and Searching [1].

The names of two different parts within an abstract package shall not be equivalent.

[Example: If an abstract package contains a part named "/a", the name of another part in that abstract package

must not be "/a" or "/A". end example]

For each part name N and string S, let the result of concatenating N, the forward slash, and S be denoted

by N[S]. A part name N1 is said to be derivable from another part name N2 if, for some string S, N1 is equivalent

to N2[S].

[Example: "/a/b" is derivable from "/a", where N is "/a" and S is "b". end example]

The name of a part shall not be derivable from the name of another part.

[Example: Suppose that an abstract package contains a part named "/segment1/segment2/…/segmentn". For it

not to be derivable, other parts in that abstract package must not have names such as "/segment1",

"/SEGMENT1", "/segment1/segment2", "/segment1/SEGMENT2", or "/segment1/segment2/…/segmentn-1".

end example]

This subclause further introduces recommendations, so that Unicode Normalization Form C (NFC) or Unicode

Normalization Form D (NFD) of part names do not cause part-name collisions. [Note: Some implementations of

directory structures always apply NFD normalization. end note]

ISO/IEC 29500-2:201x(E)

14 ©ISO/IEC 201x – All rights reserved

The application of NFC or NFD normalization to the names of two different parts within an abstract package

should not yield equivalent strings.

[Example: If an abstract package contains a part named "/é", where é is 'LATIN SMALL LETTER E' (U+0065)

followed by 'COMBINING ACUTE ACCENT' (U+0301), the name of another part in that abstract package should

not be "/é", where é is 'LATIN SMALL LETTER E WITH ACUTE' (U+00E9), or "/É", where É is 'LATIN CAPITAL

LETTER E WITH ACUTE '(U+00C9). end example]

[Example: If an abstract package contains a part named "/Å", where Å is 'ANGSTROM SIGN' (U+212B), the

name of another part in that abstract package should not be "/Å" where Å is 'LATIN CAPITAL LETTER A WITH

RING ABOVE' (U+00C5) because U+212B and U+00C5 are normalized to the same character sequence. end

example]

A part name N1 is said to be weakly derivable from another part name N2 if, for some string S, the result of

applying NFC or NFD to N1 is equivalent to the result of applying NFC or NFD to N2[S].

[Example: Consider a part name "/é", where é is 'LATIN SMALL LETTER E WITH ACUTE' (U+00E9). Another part

name "/é/a", where é is 'LATIN SMALL LETTER E' (U+0065) followed by 'COMBINING ACUTE ACCENT' (U+0301) is

weakly derivable from "/é". Another part name "/É/a", where É is 'LATIN CAPITAL LETTER E' (U+0045) followed

by 'COMBINING ACUTE ACCENT' (U+0301) is also weakly derivable. end example]

The name of a part should not be weakly derivable from the name of another part.

[Example: Suppose that an abstract package contains a part named "/é/ Å /foo", where é is 'LATIN SMALL

LETTER E WITH ACUTE' (U+00E9) and Å is 'ANGSTROM SIGN' (U+212B). For it not to be weakly derivable, no

other parts in that abstract package should have names such as "/É" and "/É/Å", where É is 'LATIN CAPITAL

LETTER E' (U+0045) followed by 'COMBINING ACUTE ACCENT' (U+0301) and Å is 'LATIN CAPITAL LETTER A WITH

RING ABOVE' (U+00C5). end example]

 Media types

Each part shall have a MIME media type, as defined in RFC 2046, to identify the type of content in that part,

consisting of a top-level media type and a subtype, optionally qualified by a set of parameters. Media types of

OPC-specific parts defined in this document shall not contain parameters.

Media types for parts defined in this document are listed in Annex E.

 Growth Hint

The growth hint (term 3.2.11) is an optional common property of a part.

[Rationale: Sometimes a part is modified after it is placed in a physical package. Depending on the nature of the

modification, the part might need to grow. For some physical formats, this could be an expensive operation and

could damage an otherwise efficient physical package. To allow the part to grow in place, moving as few bytes

as possible, the growth hint might be used to reserve space in a mapping to a particular physical format. end

rationale]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 15

 XML Usage

XML content in parts and streams defined in this document (specifically, the Media Types stream, the Core

Properties part, Digital Signature XML Signature parts, and Relationships parts) shall conform to the following:

1) XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding

declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any

encoding other than UTF-8 or UTF-16.

2) The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable

Denial of Service attacks, typically through the use of an internal entity expansion technique. As

mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this

document.

3) Validation of the XML content shall be done only after it is processed by an MCE processor as specified

in ISO/IEC 29500-3.

4) XML content shall be valid against the corresponding XSD schema defined in this document. In

particular, the XML content shall not contain elements or attributes drawn from namespaces that are

not explicitly defined in the corresponding XSD unless the XSD allows elements or attributes drawn from

any namespace to be present in particular locations in the XML markup.

5) XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they

are explicitly defined in the XSD schema or by other means described in this document.

8.3 Part Addressing

 General

This subclause is informative.

This document provides the pack scheme as a way to use IRIs (RFC 3987) to reference part resources inside a

package.

Schemes are represented in an IRI by the prefix before the colon. A well-known example is "http".

An example of an IRI in the pack scheme is:

pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml

The substring between the double slash and the first single slash represents an IRI in the http scheme for a

package, transformed to allow embedding within an IRI in the pack scheme.

References from outside of a package are absolute IRIs of the pack scheme, while those from inside are relative

IRIs, which are resolved to absolute IRIs of this scheme.

End of informative subclause.

ISO/IEC 29500-2:201x(E)

16 ©ISO/IEC 201x – All rights reserved

 Pack Scheme

This document defines a specific scheme used to refer to parts in a package: the pack scheme. An IRI that uses

the pack scheme is called a pack IRI.

[Note: The pack scheme is a historical scheme in the IANA-maintained registry of schemes located at

https://www.iana.org/assignments/uri-schemes/historic/pack. It was a provisional scheme but was changed to

a historical scheme due to a mistake (see the next Note) in the registration proposal. end note]

The syntax of pack IRIs is defined by the EBNF (see RFC 5234) as follows:

pack_IRI = "pack://" iauthority ["/" | ipath]

iauthority = *(iunreserved | sub-delims | pct-encoded)

ipath = 1*("/" isegment)

isegment = 1*(ipchar)

ipchar = <ipchar, see [RFC3987], Section 2.2>

iunreserved = <iunreserved, see [RFC3987], Section 2.2>

sub-delims = <sub-delims, see [RFC3986], Section 2.2>

pct-encoded = <pct-encoded, see [RFC3986], Section 2.1>

The authority component (iauthority) contains an embedded IRI that points to a package. (See §8.3.4 for the

procedure for transforming the IRI for the package to permit embedding in the pack IRI as the authority

component.) The authority component shall not reference a package embedded in another package.

[Note: The definition of the authority component requires that the colon character (:) be escaped as %3c.

However, in the proposed registration of the pack scheme, an unescaped colon (:) character was mistakenly

used. end note]

The optional path component (ipath) identifies a particular part within the package. When the path

component is missing, the resource identified by the pack IRI is the package as a whole.

A pack IRI might have a query component (as specified in RFC 3986). A query component in a pack IRI is not

used when resolving the IRI to a part.

A pack IRI might have a fragment component as specified in RFC 3986. If present, this fragment applies to

whatever resource the pack IRI identifies.

[Example:

Using the pack IRI to identify a part

The following IRI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container”

package resource:

pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml

end example]

https://www.iana.org/assignments/uri-schemes/historic/pack

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 17

[Example:

Equivalent pack IRIs

The following pack IRIs are equivalent:

pack://http%3c,,www.openxmlformats.org,my.container

pack://http%3c,,www.openxmlformats.org,my.container/

end example]

[Example:

A pack IRI with percent-encoded characters

The following IRI identifies the “/c/d/bar.xml” part within the

“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container

/c/d/bar.xml

end example]

 Resolving a Pack IRI to a Resource

The following is an algorithm for resolving a pack IRI to a resource (either a package or a part):

1) Parse the pack IRI into the potential three components: scheme, authority, path, as well as any fragment

identifier.

2) In the authority component, replace all commas (“,”) with forward slashes (“/”).

3) Un-percent-encode ASCII characters in the resulting authority component.

4) The resultant authority component shall be a valid IRI for the package as a whole. If it is not, the pack IRI

is invalid.

5) If the path component is empty, the pack IRI resolves to the package as a whole and the resolution

process is complete.

6) A non-empty path component shall be a valid part name. If it is not, the pack IRI is invalid.

7) The pack IRI resolves to the part with this part name in the package identified by the authority

component.

[Example:

Resolving a pack IRI to a resource

Given the pack IRI:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml

The components:

ISO/IEC 29500-2:201x(E)

18 ©ISO/IEC 201x – All rights reserved

<authority>= http%3c,,www.my.com,packages.aspx%3fmy.package

<path>= /a/b/foo.xml

are converted to the package IRI:

http://www.my.com/packages.aspx?my.package

and the path:

/a/b/foo.xml

Therefore, this IRI refers to a part named “/a/b/foo.xml” in the package at the following IRI:

http://www.my.com/packages.aspx?my.package.

end example]

 Composing a Pack IRI

The following is an algorithm for composing a pack IRI from the IRI of an entire package and a part name.

In order to be suitable for creating a pack IRI, the IRI of a package shall conform to RFC 3986 requirements for

absolute IRIs.

To compose a pack IRI from the absolute package IRI and a part name, the following steps shall be performed, in

order:

1) Remove the fragment identifier from the absolute package IRI, if present.

2) Percent-encode all percent signs (“%”), question marks (“?”), at signs (“@”), colons (“:”) and commas

(“,”) in the package IRI.

3) Replace all forward slashes (“/”) with commas (“,”) in the resulting string.

4) Append the resulting string to the string “pack://”.

5) Append a forward slash (“/”) to the resulting string. The constructed string represents a pack IRI with a

blank path component.

6) Using this constructed string as a base IRI and the part name as a relative reference, apply the rules

defined in RFC 3986 for resolving relative references against the base IRI.

The result of this operation is the pack IRI that refers to the resource specified by the part name.

[Example:

Composing a pack IRI

Given the package IRI:

http://www.my.com/packages.aspx?my.package

and the part name:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 19

/a/foo.xml

The pack IRI is:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/foo.xml

end example]

 Equivalence

Two pack IRIs are equivalent if:

1) The scheme components are octet-by-octet identical after they are both converted to lowercase; and

2) The IRIs, decoded as described in §8.3.3 from the authority components, are equivalent (the equivalency

rules by scheme, as specified in RFC 3986); and

3) The path components are equivalent part names, as specified in §8.2.2.

[Note: In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack

IRIs are equivalent without resolving them. end note]

8.4 Resolving Relative References

 General

Relative references in parts shall be resolved as specified in RFC 3986 (§5 Reference Resolution), as extended in

RFC 3987 (§6.5 Relative IRI References).

This document introduces no changes to the resolution procedure, but Annex A introduces a preprocessing for

generating relative references.

 Base IRIs

This subclause defines a procedure for determining base IRIs for resolving relative references within parts in

packages.

[Note: RFC 3986 (§5.1 Establishing a Base URI) provides four general methods, in order of precedence, for

establishing base IRIs for resolving relative references. The procedure in this subclause provides an OPC-specific

method corresponding to the second general method (RFC 3986, §5.1.2 Base URI from the Encapsulating Entity).

end note]

The base IRI depends on where that reference occurs within the package. This subclause covers the case where

a relative reference occurs in a part that is not a Relationships part. §8.5.2 covers the case where a relative

reference occurs in a Relationships part.

The base IRI shall be the pack IRI created from the IRI of the package and the name of the part within which the

relative reference occurs.

[Example:

ISO/IEC 29500-2:201x(E)

20 ©ISO/IEC 201x – All rights reserved

Consider a part /a/b/foo.xml in a package available at

http://www.mysite.com/my.package

The base IRI is

pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml

end example]

 Examples

This subclause is informative.

8.4.3.1 General

This subclause shows examples of resolving relative references. For each example, this subclause considers

three cases.

Case 1: the base IRI is a pack IRI, "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml", which is

constructed from an absolute IRI of the package and a part name.

Case 2: the base IRI is a pack IRI, "pack://http%3c,,www.mysite.com,my.package/", which is created from an

absolute IRI of the package.

Case 3: the base IRI is the absolute IRI of the package, http://www.mysite.com/my.package.

8.4.3.2 Leading slash: "/b/bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml".

Since this relative reference begins with the slash character, the path component of the base IRI

("/a/b/foo.xml") is ignored by the algorithm in §5.2.2 of RFC 3986. The scheme and authority of the resulting IRI

are the same as those of the base pack IRI. Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

Likewise, the path component of the base IRI ("/") is ignored. The rest is the same.

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") is ignored. Thus, the resulting IRI is:

"http://www.mysite.com/my.package/b/bar.xml"

8.4.3.3 No leading slash: "bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

http://www.mysite.com/my.package
http://www.mysite.com/my.package
http://www.mysite.com/my.package

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 21

Since this relative reference does not begin with the slash character, the path component of the base IRI

("/a/b/foo.xml") and that of the relative reference ("bar.xml") are merged. The merge routine in §5.2.3 of RFC

3986 first removes "foo.xml" from the path component of the base IRI, and emits "/a/b/bar.xml". Thus, the

resulting IRI is:

 "pack://http%3c,,www.mysite.com,my.package/a/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

Likewise, the path component of the base IRI ("/") and that of the relative reference ("bar.xml") are merged. The

merge routine emits "/bar.xml". Thus, the resulting IRI is:

 "pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference ("bar.xml") are

merged. The merge routine first removes "my.package" from the path component of the base IRI, and emits

"/bar.xml". Thus, the resulting IRI is:

"http://www.mysite.com/my.package/bar.xml"

8.4.3.4 Dot segment: ./bar.xml

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

As in §8.4.3.3, the merge routine removes "foo.xml" from the path component of the base IRI, and emits

"/a/b/./bar.xml". But the remove_dot_segments routine in §5.2.4 of RFC 3986 further handles this result and

emits "/a/b/bar.xml". Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/a/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

The merge routine emits "/./bar.xml" but the remove_dot_segments routine removes "./" and emits "/bar.xml".

Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference ("./bar.xml") are

merged. The merge routine first removes "my.package" from the path component of the base IRI, and emits

"/./bar.xml". But the remove_dot_segments routine removes "./" and emits "/bar.xml". Thus, the resulting IRI

is:

"http://www.mysite.com/bar.xml"

http://www.mysite.com/my.package
http://www.mysite.com/my.package
http://www.mysite.com/my.package

ISO/IEC 29500-2:201x(E)

22 ©ISO/IEC 201x – All rights reserved

8.4.3.5 Dot segment: "../bar.xml

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

The merge routine emits "/a/b/../bar.xml" but the remove_dot_segments routine removes "b/..". Thus, the

resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/a/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

The merge routine emits "/../bar.xml", but the remove_dot_segments routine replaces "/../" by "/". Thus, the

resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference ("../bar.xml")

are merged. The merge routine first removes "my.package" from the path component of the base IRI, and emits

"/../bar.xml". The remove_dot_segments routine replaces "/.." by "/" and emits "/bar.xml". The resulting IRI is:

"http://www.mysite.com/bar.xml"

End of informative subclause.

8.5 Relationships

 General

This subclause is informative.

Parts may contain references to other parts in the package and to resources outside of the package. These

references are represented inside the referring part in ways that are specific to the media type of the part, that

is, in arbitrary markup or an application-defined encoding. This effectively hides the links between parts from

applications that do not understand the media types of the parts containing such references.

This document introduces a higher-level mechanism to describe references from parts to other parts or external

resources, namely, relationships (term 3.2.3). Relationships represent connections from a source part or source

package (term 3.2.6) to a target part or target resource (term 3.2.7). Relationships from parts are called part

relationships (term 3.2.5), while those from packages are called package relationships (term 3.2.4).

Relationships make the connection directly discoverable without looking at the part contents, so they are

independent of content-specific schemas and are quick to resolve.

There are two modes (term 3.2.16) to resolve relative references to targets. Resolution in the internal target

mode provides parts and that in the external target mode provides external resources.

http://www.mysite.com/my.package

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 23

Relationships have relationship identifiers (term 3.2.15). These identifiers allow relationships to be distinguished

from one another. An identifier can also be used to associate the target of a relationship with a specific point in

a source part (for example, to represent a hyperlink), by embedding the relationship identifier at that point.

A relationship has a relationship type (term 3.2.8), an absolute IRI for identifying the role of the relationship.

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one

or more relationships has an associated Relationships part. This part holds the list of relationships for the source

part. For more information on the Relationships namespace and relationship types, see Annex E.

Relationships have a second important function: providing additional information about parts without modifying

their content. [Note: Some scenarios require information to be attached to an existing part without modifying

that part, for example, because the part is encrypted and cannot be decrypted, or because it is digitally signed

and changing it would invalidate the signature. end note]

End of informative subclause.

 Relationships Part

8.5.2.1 Relationships Part

media Type: application/vnd.openxmlformats-package.relationships+xml

Root
Namespace:

http://schemas.openxmlformats.org/package/2006/relationships

Each set of relationships sharing a common source is represented by a Relationships part. There shall be no

relationships from or to a Relationships part.

A Relationships part (term 3.2.9) shall be either a package Relationships part (§8.5.2.2) or a part Relationships

part (§8.5.2.3).

8.5.2.2 Package Relationships Part

Every relationship contained in a package Relationships part shall be a package relationship.

The name of a package Relationships part shall be “/_rels/.rels”.

When a relative reference occurs in a package Relationships part, the base IRI depends on the target mode of

the relationship. If the target mode is external, the base IRI shall be the absolute IRI of the package. If the

target mode is internal, the base IRI shall be the pack IRI created from the absolute IRI of the package.

[Example:

Consider the package Relationships part for a package available at http://www.mysite.com/my.package.

If the target mode is external, the base IRI is

ISO/IEC 29500-2:201x(E)

24 ©ISO/IEC 201x – All rights reserved

http://www.mysite.com/my.package

If the target mode is internal, the base IRI is

pack://http%3c,,www.mysite.com,my.package/

end example]

8.5.2.3 Part Relationships Part

Every relationship contained in a part Relationships part shall be a part relationship from the same source part.

The name of a part Relationships part shall be constructed from the name of the source part by adding “.rels” to

the end of the last I18N segment and inserting an I18N segment “_rels” immediately before the last I18N

segment.

[Example: If the source part name is “/foo”, the part Relationships part name is “/_rels/foo.rels”. Conversely, if

the name of a part is “/_rels/foo.rels”, it is a part Relationships part for the source part "/foo". If the source

part name is “/foo/bar.xml”, the part Relationships part name is “/foo/_rels/bar.xml.rels”. Conversely, if the

name of a part is “/foo/_rels/bar.xml.rels”, it is a part Relationships part for the source part "/foo/bar.xml". end

example]

When a relative reference occurs in a part Relationships part, the base IRI depends on the target mode of the

relationship. If the target mode is external, the base IRI shall be the absolute IRI of the package. If the target

mode is internal, the base IRI shall be the pack IRI created from the absolute IRI of the package and the source

part name.

[Example:

Consider a part Relationships part /a/b/_rels/foo.xml.rels in a package available at

http://www.mysite.com/my.package

If the target mode is external, the base IRI is

http://www.mysite.com/my.package

If the target mode is internal, the base IRI is

pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml

end example]

 Relationship Markup

8.5.3.1 General

The content of a Relationships part shall be an XML document. The requirements (including MCE processing

before validation and subsequent processing) specified in §8.2.5 apply.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 25

After the removal of any extensions by an MCE processor as specified in ISO/IEC 29500-3, a Relationships part

shall be a schema-valid XML document against opc-relationships.xsd (§C.5).

An xml:base attribute shall not exist in the output document resulting from any MCE processing (as specified in

ISO/IEC 29500-3) of the Relationships part.

8.5.3.2 Relationships Element

A Relationships element is the root element of a Relationships part. It is the container for zero or more

Relationship elements. It has no attributes. [Note: The W3C XML Schema definition of this element’s content

model is the complex type CT_Relationships, which is defined in the schema opc-relationships.xsd (§C.5). end

note]

8.5.3.3 Relationship Element

A Relationship element shall represent a relationship. The source of a relationship shall be either a package or

part with which the Relationships part containing this Relationship element is associated. [Note: The target of a

relationship is specified by the attributes of the Relationship element. end note]

Attributes Description

TargetMode This attribute specifies the target mode of a relationship.

This attribute is optional, and the default value is Internal.

The possible values for this attribute are Internal and External, as defined by the
simple type ST_TargetMode, which is defined in the schema opc-relationships.xsd
(§C.5).

Target This attribute specifies the target of a relationship.

This attribute is required.

If the value of the TargetMode attribute is Internal, the Target attribute shall be a
relative reference to a part. If the value of the TargetMode attribute is External, the
Target attribute shall be a relative reference or an absolute IRI. Base IRIs for resolving
relative references are defined in §8.4.

The possible values for this attribute are defined by the xsd:anyURI simple type of the
W3C Recommendation “XML Schema Part 2: Datatypes”.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships_CT_Relationships.html

ISO/IEC 29500-2:201x(E)

26 ©ISO/IEC 201x – All rights reserved

Attributes Description

Type This attribute specifies the relationship type of a relationship.

This attribute is required.

Relationship types can be compared to determine whether two Relationship elements
are of the same type. This comparison is conducted in the same way as when
comparing URIs that identify XML namespaces: the two URIs are treated as strings and
considered identical if and only if the strings have the same sequence of characters.
The comparison is case-sensitive, and no escaping is done or undone.

[Example:

Type="http://schemas.openxmlformats.org/package/2006/relations
hips/ digital-signature/signature"

end example]

The possible values for this attribute are defined by the xsd:anyURI simple type of the
W3C Recommendation “XML Schema Part 2: Datatypes”.

Id This attribute specifies the identifier of a relationship. The value of the Id attribute
shall be unique within the Relationships part.

This attribute is required.

[Example:

Id="A5FFC797514BC"
end example]

The possible values for this attribute are defined by the xsd:ID simple type of the W3C
Recommendation “XML Schema Part 2: Datatypes”.

[Note: The W3C XML Schema definition of this element’s content model is the complex type CT_Relationship,

which is defined in the schema opc-relationships.xsd (§C.5). end note]

 Examples

This subclause is informative.

8.5.4.1 Relationships Part Associated with the Entire Package

Consider a package available at http://www.example.com/ex.opc. Suppose that the package contains a

Relationships part "/_rels/.rels". This Relationships part is a package Relationships part, which is associated with

the entire package.

Also, suppose that the content of this package Relationships part is the XML document shown below:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

http://schemas.openxmlformats.org/package/2006/relationships/%20digital-signature/signature
http://schemas.openxmlformats.org/package/2006/relationships/%20digital-signature/signature
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships_CT_Relationship.html
http://www.example.com/ex.opc

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 27

 <Relationship

 Target="a.xml"

 Id="IDI1"

 Type="http://example.com/relTypeInt1"/>

 <Relationship

 Target="a.xml"

 TargetMode="External"

 Id="IDE1"

 Type="http://example.com/relTypeExt1"/>

</Relationships>

The two Relationship elements in this package Relationships part specify two relationships. The source of each

relationship is the package.

The first relationship:

• The target mode is Internal (default). Thus, the base IRI for resolving "a.xml" is the pack IRI

(pack://http%3c,,www.example.com,ex.opc) created from the IRI of the package

(http://www.example.com/ex.opc).

• The result of resolving "a.xml" is "pack://http%3c,,www.example.com,ex.opc/a.xml". The target of this

relationship is thus the part "/a.xml" in this package.

• The relationship type of this relationship is "http://example.com/relTypeInt1".

• The identifier of this relationship is "IDI1".

The second relationship:

• The target mode is External. Thus, the base IRI for resolving "a.xml" is the IRI

("http://www.example.com/ex.opc") of the package.

• The target of this relationship is thus the resource at "http://www.example.com/a.xml".

• The relationship type of this relationship is "http://example.com/relTypeExt1".

• The identifier of this relationship is "IDE1".

8.5.4.2 Relationships Part Associated with a Part

Consider a package available at http://www.example.com/ex.opc. Suppose that the package contains a

Relationships part "/foo_rels/test.xml.rels". This Relationships part is a part Relationships part, the source of

which is a part "/foo/test.xml".

Also, suppose that the content of this part Relationships part is the XML document shown below:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="b.xml"

 Id="IDI2"

http://www.example.com/ex.opc

ISO/IEC 29500-2:201x(E)

28 ©ISO/IEC 201x – All rights reserved

 Type="http://example.com/relTypeInt2"/>

 <Relationship

 Target="b.xml"

 TargetMode="External"

 Id="IDE2"

 Type="http://example.com/relTypeExt2"/>

</Relationships>

The two Relationship elements in this part Relationships part specify two relationships. The source of each

relationship is the part "/foo/test.xml".

The first relationship:

• The mode of the first relationship is Internal (default). Thus, the base IRI

("pack://http%3c,,www.example.com,ex.opc/foo/test.xml") is the pack IRI created from the IRI

(http://www.example.com/ex.opc) of the package and the part name "/foo/test.xml".

• The result of resolving "b.xml" is "pack://http%3c,,www.example.com,ex.opc/foo/b.xml". The target of this

relationship is thus the part "/foo/b.xml" in this package.

• The relationship type of this relationship is "http://example.com/relTypeInt2".

• The identifier of this relationship is "IDI2".

The second relationship:

• The mode of the second relationship is External. Thus, the base IRI is the IRI

(http://www.example.com/ex.opc) of the package.

• The target of this relationship is thus the resource at "http://www.example.com/b.xml".

• The relationship type of this relationship is "http://example.com/relTypeExt2".

• The identifier of this relationship is "IDE2".

8.5.4.3 Relationships Parts Related to Digital Signature Markup

The Digital Signature Origin part is targeted by a package relationship, which is stored in the package

Relationships part, /_rels/.rels. This package relationship might be represented by a Relationship element

shown below:

<Relationship Id="rId4"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/origin"

 Target="_xmlsignatures/origin.sigs"/>

The connection from the Digital Signature Origin to the Digital Signature XML Signature part is represented by a

part relationship, which is stored in a part Relationships part, /_xmlsignatures/_rels/origin.rels.

The content of /_xmlsignatures/_rels/origin.rels might be the XML document shown below:

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 29

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="sig1.xml"

 Id="rId1"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/signature"/>

</Relationships>

8.5.4.4 Relationships Targeting External Resources

Relationships can target resources outside the package at an absolute location and resources located relative to

the current location of the package. The following Relationships part specifies relationships that connect a

package or part to pic1.jpg at an external absolute location, and to my_house.jpg at an external location relative

to the location of the package:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"

 <Relationship

 TargetMode="External"

 Id="A9EFC627517BC"

 Target="http://www.example.com/images/pic1.jpg"

 Type="http://www.example.com/external-resource"/>

 <Relationship

 TargetMode="External"

 Id="A5EFC797514BC"

 Target="images/my_house.jpg"

 Type="http://www.example.com/external-resource"/>

</Relationships>

end example]

8.5.4.5 Multiple Relationships that have the Same Target

The following Relationships part contains two relationships, each using a unique Id value. The relationships

share the same Target, but have different relationship types.

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/

 relationships/digital-signature/signature"/>

 <Relationship

 Target="Signature.xml"

ISO/IEC 29500-2:201x(E)

30 ©ISO/IEC 201x – All rights reserved

 Id="B5F32797CC4B7"

 Type="http://www.example.com/internal-resource"/>

</Relationships>

end example]

End of informative subclause.

 Support for Versioning and Extensibility

Relationships parts might contain the versioning and extensibility mechanisms defined in ISO/IEC 29500-3 to

incorporate elements and attributes drawn from other XML namespaces.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 31

9 Physical Package Model

9.1 General

This subclause is informative.

This clause introduces a physical package model (term 3.3.3) in terms of a physical format (such as the ZIP

format) and a mapping from the abstract package model to this physical format. See Annex F for additional

discussion of physical package model design considerations.

This clause further specifies general guidelines and common mechanisms for physical package models and

defines a ZIP-based physical package model. The interleaving mechanism (see §9.2.4) is such a common

mechanism.

An example physical package is described in H.3.

End of informative subclause.

9.2 Physical Mapping Guidelines

 Using Features of Physical Formats

Many physical formats have features that partially match components in the abstract package model. A mapping

from the abstract package model to a physical format should take advantage of any similarities in capabilities

between the abstract package model and the physical format while using layers of mapping to provide

additional capabilities not inherently present in the physical format. [Example: Some physical formats store

parts as individual files in a file system, in which case, it is advantageous to map many part names directly to

identical physical file names. end example]

 Mapped Components

A physical package model is required to represent packages, parts (including Relationships parts), part names,

and part media types, but is not required to represent a growth hint.

 Mapping Media Types to Parts

9.2.3.1 General

A physical format may have a native mechanism for associating media types with parts. [Example: The Content-

Type field in the header of a MIME entity associates a media type with that MIME entity. end example] For such

a physical format, mappings from the abstract package model should use the native mechanism.

For all other physical formats, the package shall include an XML stream that is referred to in this document as

the Media Types stream. The Media Types stream shall not represent a part. This stream shall not be URI-

ISO/IEC 29500-2:201x(E)

32 ©ISO/IEC 201x – All rights reserved

addressable. However, it can be interleaved in the physical package using the same mechanisms used for

interleaving parts.

9.2.3.2 Media Types Stream Markup

9.2.3.2.1 General

The content of the Media Types stream shall be an XML document. The requirements (including MCE processing

before validation and subsequent processing) specified in §8.2.5 apply.

The content of the Media Types stream shall be a schema-valid XML document against opc-contentTypes.xsd

(§C.2). This XML document shall have a top-level Types element, and one or more Default and Override child

elements. Default elements shall define default mappings from the extensions of part names to media types.

Override elements shall specify media types on parts that are not covered by, or are not consistent with, the

default mappings. [Note: Default elements can be used to reduce the number of Override elements on a part.

end note]

For all parts of the package other than Relationships parts (§8.5.2), the Media Types stream shall specify either:

• One matching Default element, or

• One matching Override element, or

• Both a matching Default element and a matching Override element, in which case, the Override element

takes precedence.

There shall not be more than one Default element for any given extension, and there shall not be more than

one Override element for any given part name.

The order of Default and Override elements in the Media Types stream shall not be significant.

The Media Types stream may define Default elements even though no parts use them.

9.2.3.2.2 Types Element

A Types element shall be the root element of the XML document contained in the Media Types stream.

This element shall have no attributes.

[Note: The W3C XML Schema definition of this element’s content model is the complex type CT_Types, which is

defined in the schema opc-contentTypes.xsd (§C.2). end note]

9.2.3.2.3 Default Element

A Default element shall specify the default mappings from the extensions of part names to media types.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Types.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 33

Attributes Description

Extension This attribute shall specify a string as a file extension.

This attribute is required.

A Default element shall match any part whose name ends with a period (“.”) followed
by the value of this attribute.

The possible values for this attribute are defined by the simple type ST_Extension,
which is defined in the schema opc-contentTypes.xsd (§C.2).

ContentType This attribute shall specify a media type using the syntax defined in RFC 7231 §3.1.1.1.

This attribute is required.

The specified media type shall apply to any matching parts (unless overridden by
Override elements).

The possible values for this attribute are defined by the simple type ST_ContentType,
which is defined in the schema opc-contentTypes.xsd (§C.2).

[Note: The W3C XML Schema definition of this element’s content model is the complex type CT_Default, which

is defined in the schema opc-contentTypes.xsd (§C.2). end note]

9.2.3.2.4 Override Element

An Override element shall specify a media type for a part that is not covered by, or is not consistent with, the

default mappings.

Attributes Description

ContentType This attribute shall specify a media type using the syntax defined in RFC 7231 §3.1.1.1.

This attribute is required.

The specified media type shall apply to the part named in the attribute PartName.

The possible values for this attribute are defined by the simple type ST_ContentType,
which is defined in the schema opc-contentTypes.xsd (§C.2).

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_Extension.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_ContentType.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Default.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_ContentType.html

ISO/IEC 29500-2:201x(E)

34 ©ISO/IEC 201x – All rights reserved

Attributes Description

PartName This attribute shall specify a part name.

This attribute is required.

An Override element shall match a part whose name is equal to the value of this
attribute.

The possible values for this attribute are defined by the xsd:anyURI simple type of the
W3C Recommendation “XML Schema Part 2: Datatypes.

[Note: The W3C XML Schema definition of this element’s content model is the complex type CT_Override, which

is defined in the schema opc-contentTypes.xsd (§C.2). end note]

9.2.3.3 Media Types Stream Markup Example

[Example:

Example 9–1. Media Types stream markup

<Types

 xmlns="http://schemas.openxmlformats.org/package/2006/content-types">

 <Default Extension="txt" ContentType="text/plain" />

 <Default Extension="jpeg" ContentType="image/jpeg" />

 <Default Extension="picture" ContentType="image/gif" />

 <Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The Types element is a container for media types used within the package.

The following is a sample list of parts and their corresponding media types as defined by the Media Types

stream markup above.

Part name Media type

/a/b/sample1.txt text/plain

/a/b/sample2.jpg image/jpeg

/a/b/sample3.picture image/gif

/a/b/sample4.picture image/jpeg

end example]

9.2.3.4 Setting a Part Media Type in the Media Types Stream

When adding a new part to a package, the package implementer shall ensure that a media type for that part is

specified in the Media Types stream. The package implementer shall perform the following steps to do so:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Override.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 35

1) Get the extension from the part name by taking the substring to the right of the rightmost occurrence of

the dot character (“.”) from the rightmost segment.

2) If a part name has no extension, a corresponding Override element shall be added to the Media Types

stream.

3) Compare the resulting extension with the values specified for the Extension attributes of the Default

elements in the Media Types stream. The comparison shall be ASCII case-insensitive matching.

4) If there is a Default element with a matching Extension attribute, then the media type of the new part

shall be compared with the value of the ContentType attribute. The comparison might be case-sensitive

and include every character regardless of the role it plays in the content-type grammar of RFC 7231, or it

might follow the grammar of RFC 7231.

a) If the media types match, no further action is required.

b) If the media types do not match, a new Override element shall be added to the Media Types

stream.

5) If there is no Default element with a matching Extension attribute, a new Default element or Override

element shall be added to the Media Types stream.

9.2.3.5 Determining a Part Media Type from the Media Types Stream

To get the media type of a part, the package implementer shall perform the following steps:

1) Compare the part name with the values specified for the PartName attribute of the Override elements.

The comparison shall be ASCII case-insensitive matching.

2) If there is an Override element with a matching PartName attribute, return the value of its

ContentType attribute. No further action is required.

3) If there is no Override element with a matching PartName attribute, then

a) Get the extension from the part name by taking the substring to the right of the rightmost

occurrence of the dot character (“.”) from the rightmost segment.

b) Check the Default elements of the Media Types stream, comparing the extension with the value

of the Extension attribute. The comparison shall be ASCII case-insensitive matching.

If there is a Default element with a matching Extension attribute, return the value of its ContentType

attribute. No further action is required.

[Note: Given a conformant package, either an Override is found by the third step or a Default element is found

by the fourth step. end note]

9.2.3.6 Support for Versioning and Extensibility

The Media Types stream shall not use the versioning and extensibility mechanisms defined in ISO/IEC 29500-3 .

 Interleaving

When mapping an abstract package to a physical package, the data stream of a part or the Media Types stream

may be broken into pieces, which can be interleaved with pieces of other parts or with whole parts. Pieces can

Commented [rcj3]: Attention Reviewers:
We don’t understand this sentence. Besides, the word “might” is
not a normative requirement. We’re inclined to remove this
sentence, or relegate it to a note, once we know what it means.

ISO/IEC 29500-2:201x(E)

36 ©ISO/IEC 201x – All rights reserved

later be joined together, forming the original stream, based on piece names, as specified in §9.2.5.2. Pieces in

physical packages shall occur in their natural order for optimal efficiency.

This document does not require a package implementer to support interleaving.

Pieces exist only in the physical package and are not addressable in the abstract package model. A piece might

be empty.

A physical package may contain both interleaved parts and non-interleaved parts. However, it shall not contain

both a whole part and a piece of the same part

[Example:

Example 9–2. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an

image part (images/picture.jpg) referring to an image that appears on the page.

markup/page.xml images/picture.jpeg

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The

figure below illustrates this scenario. The image cannot be displayed until the entire page part and the image

part have been received. In some circumstances, such as small packages on a high-speed network, this might be

acceptable. In others, having to read through all of markup/page.xml to get to the image results in unacceptable

performance or places unreasonable memory demands.

images/picture.jpeg

markup/page.xml
byte 0

byte n

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the

image part immediately following the reference to the image. This allows the image to be processed as soon as

the reference is encountered.

Commented [rcj4]: Attention Reviewers:
In the current standard, this is not required. We’d like to make it a
requirement because we don’t want to force implementations to
cache pieces, hence the use of “shall” here. Is this OK as opposed to
“should” (being guidance)?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 37

images/picture.jpeg

markup/page.xml
part 1

byte 0

byte n

markup/page.xml
part 2

end example]

 Mapping Part Names to Physical Package Item Names

9.2.5.1 General

A mapping from an abstract package to a physical package shall use logical items as intermediate objects in

order to permit interleaving (§9.2.4). If a part or the Media Types stream is interleaved, each piece constructed

from it shall be a logical item; otherwise, the part or Media Types stream shall be a logical item.

/foo.xaml

/bar.xaml

Part names
(Public, case-insensitive)

Logical item
names

/foo.xaml

/bar.xaml/[0].piece

/bar.xaml/[1].piece

/bar.xaml/[2].piece

/bar.xaml/[3].piece

/bar.XAML/[4].last.piece

/[ContentTypes].xml

9.2.5.2 Logical Item Names

Names of logical items shall be Unicode strings. The support of non-ASCII characters is not required.

ISO/IEC 29500-2:201x(E)

38 ©ISO/IEC 201x – All rights reserved

If a logical item is a piece, its name shall have suffixes of the following syntax:

SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber = "0" | NonZeroDigit [1*Digit]

Digit = "0" | NonZeroDigit

NonZeroDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The prefix of a logical item name is the result of removing a suffix, if any, from the logical item name.

Equivalence of prefixes, and of suffixes shall be determined by ASCII case-insensitive matching. Logical names

shall be equivalent if their prefixes and suffixes are equivalent. A physical package shall not contain equivalent

logical item names.

Logical item names that use suffix names shall form a complete sequence if and only if:

1) The prefix names of all logical item names in the sequence are equivalent, and

2) The suffix names of the sequence start with “/[0].piece” and end with “/[n].last.piece” and include a

piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted

as decimal integer values.

9.2.5.3 Mapping Part Names to Logical Item Names

Names of non-interleaved parts shall be mapped to logical item names that have an equivalent prefix and no

suffix.

Names of interleaved parts shall be mapped to the complete sequence of logical item names with an equivalent

prefix.

9.2.5.4 Mapping Logical Item Names and Physical Package Item Names

The mapping of logical item names and physical package item names shall be specific to the particular physical

package.

9.2.5.5 Mapping Logical Item Names to Part Names

A logical item name without a suffix shall be mapped to a part name with an equivalent prefix, provided that the

prefix name conforms to the part name syntax.

A complete sequence of logical item names shall be mapped to the part name that is equal to the prefix of the

logical item name having the suffix “/[0].piece”, provided that the prefix name conforms to the part name

syntax.

A physical package may contain logical item names and complete sequences of logical item names that cannot

be mapped to a part name because the logical item name does not follow the part naming grammar. Such

logical items or complete sequences of logical items shall not be mapped to parts.

[Example: A ZIP item name [trash]/0000.dat cannot be mapped to a logical item. Thus, this ZIP item does not

represent a logical item or part. end example]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 39

9.3 Mapping to a ZIP file

 General

This document defines a mapping for the ZIP file (term 3.3.8) format. Future versions of this document might

provide additional mappings.

A ZIP file representing a physical package shall not have any features of the ZIP file format specification related

to encryption, decryption, or digital signatures.

The ZIP format includes a number of features that this document does not use. See Annex B for OPC-specific ZIP

information.

Physical package items of ZIP files shall be ZIP items (term 3.3.7). [Note: When users unzip a ZIP-based package,

they see a set of files and folders that reflects the parts in the package and their hierarchical naming structure.

end note]

Table 9–1, shows the various components of the abstract package model and their corresponding physical

representation in a ZIP file.

Table 9–1. Abstract package model components and their physical representations

Abstract package
model component

Physical representation

Package ZIP file

Part ZIP item

Part name Stored in item header (and ZIP central directory as appropriate). See
§9.3.4 for conversion rules.

Part media type ZIP item containing the Media Types stream described in §9.2.3.2. See
§9.3.7 for details about the ZIP item name.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §9.3.8 for a detailed description of the data structure.

 Mapping Part Data

Each non-interleaved part shall be represented as a single ZIP item. Each piece of an interleaved part, as

described in §9.2.4, shall be represented as a single ZIP item.

 ZIP Item Names

ZIP item names shall conform to the ZIP File Format Specification. A mapping from an abstract package to a ZIP

file shall only use ASCII ZIP item names. ZIP item names shall be unique within a given ZIP file.

[Example: A ZIP file might contain the following ZIP item names mapped to part pieces and whole parts:

spine.xml/[0].piece

pages/page0.xml

ISO/IEC 29500-2:201x(E)

40 ©ISO/IEC 201x – All rights reserved

spine.xml/[1].piece

pages/page1.xml

spine.xml/[2].last.piece

pages/page2.xml

end example]

 Mapping Logical Item Names to ZIP Item Names

The process of mapping of logical item names to ZIP item names shall involve, in order, for each logical item, the

following steps:

1) Remove the leading forward slash (“/”) from the logical item name or, in the case of interleaved parts,

from each of the logical item names within the complete sequence.

2) Percent-encode every non-ASCII character.

 Mapping ZIP Item Names to Logical Item Names

For all ZIP items, except for MS-DOS ZIP items (as defined in the ZIP Appnote) that are not MS-DOS files, their

names shall be mapped to logical item names.

The process of mapping of ZIP item names to logical item names shall involve, in order, for each ZIP item, the

following steps:

1) Un-percent-encode every non-ASCII character.

2) Add a forward slash (“/”).

[Note: The ZIP Appnote specifies that ZIP items recognized as MS-DOS files are those with a “version made by”

field and an “external file attributes” field in the “file header” record in the central directory that have a value

of 0. end note]

 ZIP Package Limitations

This document requires that a file header in the central directory structure within a ZIP file shall not exceed

65,535 bytes (see "F. Central directory structure" in the ZIP Appnote). Each file header contains a zip item name,

Extra field (including bytes representing Growth Hint as specified in §8.2.4), File Comment, and 42 more bytes

representing miscellaneous fields.

Package implementers should restrict part naming to accommodate file system limitations when naming parts

to be stored as ZIP items.

[Example: Examples of these limitations are:

• On MS Windows file systems, the asterisk (“*”) and colon (“:”) are not supported, so parts named with this

character do not unzip successfully.

• On MS Windows file systems, many programs can handle only file names that are less than 256 characters

including the full path; parts with longer names might not behave properly once unzipped.

Commented [rcj5]: Attention Reviewers:
This suggests that some MS-DOS ZIP items are not MS DOS files. Is
this correct? Why do we only mention MS-DOS, vs. Atari, CP/M?

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 41

end example]

ZIP-based packages shall not include encryption as described in the ZIP Appnote.

ZIP-based packages shall not use compression algorithms except DEFLATE, as described in the ZIP Appnote.

 Mapping the Media Types Stream

In ZIP files, the Media Types stream shall be stored in an item with the name “[Content_Types].xml” or, in the

interleaved case, in the complete sequence of ZIP items “[Content_Types].xml/[0].piece”,

“[Content_Types].xml/[1].piece”, …, and “[Content_Types].xml/[n].last.piece”.

[Note: Bracket characters "[" and "]" were chosen for the Media Types stream name specifically because these

characters violate the part naming grammar, thus reinforcing the requirement that the ZIP item names

constructed from the Media Types stream are always distinguishable from those constructed from part names.

end note]

 Mapping the Growth Hint

The additional space suggested by growth hint (term 3.2.11) is stored in the Extra field, as defined in the ZIP file

format specification. If the growth hint is used for an interleaved part, the padding is stored in the Extra field of

the ZIP item representing the first piece of the part.

The format of the ZIP item's Extra field, when used for growth hints, is shown in the table below:

Table 9–2. Structure of the Extra field for growth hints

Field Component Size Value

Header ID 2 bytes 0xA220

Length of Extra field 2 bytes The length in bytes of the remaining components
of the Extra field: Signature component length +
Padding Initial Length component length +
Padding component length

Signature (for
verification)

2 bytes 0xA028

Padding Initial Length 2 bytes The length in bytes of the Padding component set
by a package implementer when the item is
created

Padding variable Filled with 0x00 bytes

Commented [rcj6]: Attention Reviewers:
Is this the Padding length or the Extra field length?

ISO/IEC 29500-2:201x(E)

42 ©ISO/IEC 201x – All rights reserved

10 Core Properties

10.1 General

This subclause is informative.

Users can associate core properties with packages. Such core properties enable users to get and set well-known

and common sets of property metadata to packages. The core properties and the specifications that describe

them are shown in the table below:

Table 10–1. Core properties

Property Specification Description

category Open Packaging
Conventions

A categorization of the content of this package.

contentStatus Open Packaging
Conventions

The status of the content.

created DCMI Metadata
Terms

Date of creation of the resource.

creator Dublin Core Metadata
Element Set

An entity primarily responsible for making the content of the
resource.

description Dublin Core Metadata
Element Set

An explanation of the content of the resource.

identifier Dublin Core Metadata
Element Set

An unambiguous reference to the resource within a given
context.

keywords Open Packaging
Conventions

A delimited set of keywords to support searching and indexing.
This is typically a list of terms that are not available elsewhere
in the properties.

language Dublin Core Metadata
Element Set

The language of the intellectual content of the resource. [Note:
IETF RFC 3066 provides guidance on encoding to represent
languages. end note]

lastModifiedBy Open Packaging
Conventions

The user who performed the last modification. The
identification is environment-specific.

lastPrinted Open Packaging
Conventions

The date and time of the last printing.

modified DCMI Metadata
Terms

Date on which the resource was changed.

revision Open Packaging
Conventions

The revision number.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 43

Property Specification Description

subject Dublin Core Metadata
Element Set

The topic of the content of the resource.

title Dublin Core Metadata
Element Set

The name given to the resource.

version Open Packaging
Conventions

The version number.

End of informative subclause.

10.2 Core Properties Part

A package shall contain at most one Core Properties part.

A Core Properties part within the package shall be referenced by a core properties relationship from the

package, as listed in Annex E. A package shall contain at most one core properties relationship.

10.3 Core Properties Markup

 General

The content of the Core Properties part shall be an XML document that satisfies the requirements specified in

§8.2.5. Its media type shall be the Core Properties part media type, as defined in Annex E.

The content of the Core Properties part shall be a schema-valid XML document against opc-coreProperties.xsd

(§C.3).

Unless specified otherwise, elements representing a Core Properties part shall be of the namespace as defined

in Annex E.

[Example:

An example of a core properties part is shown below.

<coreProperties

 xmlns="http://schemas.openxmlformats.org/package/2006/metadata/

 core-properties"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <dc:creator>Alan Shen</dc:creator>

 <dcterms:created xsi:type="dcterms:W3CDTF">

 2005-06-12

 </dcterms:created>

ISO/IEC 29500-2:201x(E)

44 ©ISO/IEC 201x – All rights reserved

 <dc:title>OPC Core Properties</dc:title>

 <dc:description>Spec defines the schema for OPC Core Properties and their

location within the package</dc:description>

 <dc:language>eng</dc:language>

 <version>1.0</version>

 <lastModifiedBy>Alan Shen</lastModifiedBy>

 <dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

 <contentStatus>Reviewed</contentStatus>

 <category>Specification</category>

</coreProperties>

In this example dc:creator, dcterms:created dc:title, dc:description, dc:language, version, lastModifiedBy,

dcterms:modified, contentStatus, and category are core property elements.

end example]

 coreProperties element

A coreProperties element is the root element of a Core Properties part.

This element shall have no attributes.

Children of this element shall be core property elements, as defined in §10.3.3.

The content of this element is defined by the complex type CT_CoreProperties, which is defined in the schema

opc-coreProperties.xsd (§C.3)..

 Core Property Elements

10.3.3.1 General

Core property elements shall be elements representing core properties. Core property elements are non-

repeatable. They can be empty or omitted.

10.3.3.2 Core Property elements from Dublin Core Metadata Element Set, Version 1.1

This document allows creator, description, identifier, language, subject, and title elements as defined by ISO

15836-1 (The Dublin Core metadata element set, Part 1: Core elements) as core property elements.

[Note: These elements belong to the namespace "http://purl.org/dc/elements/1.1/". end note]

These elements shall not have child elements and shall not have the xsi:type attribute or the xml:lang attribute.

[Example:

The example in §10.3.1 contains four elements from ISO 15836-1.

<dc:creator>Alan Shen</dc:creator>

<dc:title>OPC Core Properties</dc:title>

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_CoreProperties.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 45

<dc:description>Spec defines the schema for OPC Core Properties and their

location within the package</dc:description>

<dc:language>eng</dc:language>

end example]

10.3.3.3 Core Property Elements from DCMI Metadata Terms

This document allows created and modified elements as defined by DCMI Metadata Terms as core property

elements.

[Note: These elements belong to the namespace http://purl.org/dc/terms/. end note]

This document introduces further requirements. These elements shall not have child elements and shall not

have the xml:lang attribute. These elements shall have the xsi:type attribute whose value is

"dcterms:W3CDTF" (the W3C Note "Date and Time Formats" [2]) and dcterms shall be declared as the prefix of

the Dublin Core namespace "http://purl.org/dc/terms/".

[Example:

The example in §10.3.1 contains two elements from DCMI Metadata Terms.

<dcterms:created xsi:type="dcterms:W3CDTF">2005-06-12</dcterms:created>

<dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

end example]

10.3.3.4 Core Property Elements defined in this Document

10.3.3.4.1 category Element

A category element specifies the category of the content of the package.

[Example: Example values for this property might include Resume, Letter, Financial Forecast, Proposal, and

Technical Presentation. This value might be used by an application's user interface to facilitate navigation of a

large set of documents. end example]

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

[Note: The W3C XML Schema definition of this element is in the schema opc -coreProperties.xsd (§C.3). end

note]

[Example:

A category element is in the example in §10.3.1.

<category>Specification</category>

http://purl.org/dc/terms/
http://purl.org/dc/terms/

ISO/IEC 29500-2:201x(E)

46 ©ISO/IEC 201x – All rights reserved

end example]

10.3.3.4.2 contentStatus Element

A contentStatus element specifies the status of the content of the package.

[Note: Values might include “Draft”, “Reviewed”, and “Final”. end note]

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

[Note: The W3C XML Schema definition of this element is in the schema opc -coreProperties.xsd (§C.3). end

note]

[Example:

The example in §10.3.1 contains

<contentStatus>Reviewed</contentStatus>

end example]

10.3.3.4.3 keywords Element

A keywords element specifies the keywords for the content of the package.

A keywords element shall have an optional attribute xml:lang, as defined by XML 1.0. A keywords element has

a mixed content model such that each keyword can be wrapped by a value element having an xml:lang attribute

individually.

[Example: The following instance of the keywords element has keywords in English (Canada), English (U.S.), and

French (France):

<keywords xml:lang="en-US">

 color

 <value xml:lang="en-CA">colour</value>

 <value xml:lang="fr-FR">couleur</value>

</keywords>

end example]

[Note: The W3C XML Schema definition of this element's content model in the complex type CT_Keywords,

which is defined in the schema opc -coreProperties.xsd (§C.3). end note]

10.3.3.4.4 value Element

A value element specifies a keyword for the content of the package.

A value element shall have an optional attribute xml:lang, as defined by XML 1.0.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_Keywords.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 47

[Note: The W3C XML Schema definition of this element's content model is the complex type CT_Keyword, which

is defined in the schema opc -coreProperties.xsd (§C.3). end note]

10.3.3.4.5 lastModifiedBy Element

A lastModifiedBy element specifies who modified the content of the content.

[Example: A name, email address, or employee ID. end example]

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

[Note: The W3C XML Schema definition of this element is the schema opc -coreProperties.xsd (§C.3). end note]

[Example: The example in 10.3.1 contains

<lastModifiedBy>Alan Shen</lastModifiedBy>

end example]

10.3.3.4.6 lastPrinted Element

A lastPrinted element specifies when the content was printed last time.

This element shall have no attributes.

The content of this element is defined by the xsd:dateTime simple type.

[Note: The W3C XML Schema definition of this element is the schema opc -coreProperties.xsd (§C.3). end note]

[Example: The example in §10.3.1 contains

<lastPrinted>2017-01-01</lastPrinted>

Another example is

<lastPrinted>2017-04-17T14:20:10+09:00</lastPrinted>

end example]

10.3.3.4.7 revision Element

A revision element specifies the revision number of the content of the package.

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

[Note: The W3C XML Schema definition of this element is the schema opc -coreProperties.xsd (§C.3). end note]

[Example:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_Keyword.html

ISO/IEC 29500-2:201x(E)

48 ©ISO/IEC 201x – All rights reserved

<revision>4</revision>

end example]

10.3.3.4.8 version Element

A version element specifies the version of the content of the package.

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

[Note: The W3C XML Schema definition of this element is the schema opc -coreProperties.xsd (§C.3). end note]

[Example:

 <version>1.0</version>

end example]

10.4 Support for Versioning and Extensibility

A Core Properties part shall not contain elements or attributes of the Markup Compatibility namespace as

defined in Annex E.

[Note: Versioning and extensibility functionality is accomplished by creating a new part and using a relationship

with a new type to point from the Core Properties part to the new part. This document does not provide any

requirements or guidelines for new parts or relationship types that are used to extend core properties. ISO/IEC

TR 30114-1 [4] provides such a guideline. end note]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 49

11 Thumbnails

Thumbnail parts shall be image parts identified by either a part relationship or a package relationship. This

relationship shall have a relationship type for Thumbnail parts, as defined in Annex E.

[Note: Thumbnail parts may be used to help end-users identify parts of a package or a package as a whole. end

note]

ISO/IEC 29500-2:201x(E)

50 ©ISO/IEC 201x – All rights reserved

12 Digital Signatures

12.1 General

A package may include markup specifying that parts of a package have been signed. This clause describes how

OPC applies the W3C Recommendation “XML-Signature Syntax and Processing” in the construction of this

markup.

12.2 Overview of OPC-Specific Restrictions and Extensions to “XML-

Signature Syntax and Processing”

This subclause is informative.

Digital signatures are represented as separate OPC parts. In other words, digital signatures are detached from

the content to be signed.

This document introduces markup for specifying when a signature is created. This markup appears in an Object

element.

This document introduces markup (§12.5.6.2) and a transform algorithm ("Relationships transform", §12.6) for

flexibly defining the relationships to be signed.

This document mandates the use of the Manifest element as a child of an Object element for enumerating parts

to be signed.

End of informative text.

12.3 Choosing Content to Sign

It is assumed that there is a signature policy to determine which parts and relationships to sign.

This clause provides flexibility in defining the content to be signed, thus allowing other contents to be mutable.

For further information on how to define which content is to be signed, see §12.5.5 and §12.5.6.2.

12.4 Digital Signature Parts

 General

Digital signatures in packages use the Digital Signature Origin part, Digital Signature XML Signature parts, and

Digital Signature Certificate parts. Relationship types and media types relating to the use of digital signatures in

packages are specified in Annex E. [Note: An example relationship from the Digital Signature Origin part to a

Digital Signature XML Signature part is provided in §8.5.4.3. end note]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 51

[Example: Figure 12–1 shows a signed package with signature parts, signed parts, and an X.509 certificate part.

The example Digital Signature Origin part has relationships to two Digital Signature XML Signature parts, each

containing a signature. The signatures relate to the signed parts.

Figure 12–1. A signed package

end example]

 Digital Signature Origin Part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. No more

than one Digital Signature Origin part shall exist in a package and that part shall be the target of a Digital

Signature Origin relationship, as specified in Annex E, from the package. This part shall exist if the package

contains any Digital Signature XML Signature parts, and shall be optional otherwise. The content of the Digital

Signature Origin part shall be empty.

 Digital Signature XML Signature Part

A Digital Signature XML Signature part shall contain digital signature markup (see §12.5). Each Digital Signature

XML Signature part shall be the target of a Digital Signature relationship, as specified in Annex E, from the Digital

Signature Origin part. A package may contain more than one Digital Signature XML Signature part.

[Note: Future versions of this document might specify distinct relationship types for revised signature parts.

Using these relationships, packages would be able to contain separate signature information for current and

previous versions. For reference validation and signature validation it would be possible to choose the

appropriate XML digital signatures. end note]

ISO/IEC 29500-2:201x(E)

52 ©ISO/IEC 201x – All rights reserved

 Digital Signature Certificate Part

An X.509 certificate is used to validate a signature and can be contained either within a Digital Signature XML

Signature part, as a separate Digital Signature Certificate part, or stored outside the package.

If the certificate is represented as a separate part within the package, that certificate shall be the target of a

Digital Signature Certificate part relationship, as specified in Annex E, from the appropriate Digital Signature XML

Signature part. The part containing the certificate may be signed. The media type of the Digital Signature

Certificate part and the relationship targeting it from the Digital Signature XML Signature part are defined in

Annex E. A Digital Signature Certificate part may be used to create more than one signature. A Digital Signature

Certificate part should be the target of at least one Digital Signature Certificate relationship from a Digital

Signature XML Signature part.

12.5 Digital Signature Markup

 General

The content of a Digital Signature XML Signature part shall be an XML document. The requirements (including

MCE processing before validation and subsequent processing) specified in §8.2.5 apply.

After the removal of any extensions by an MCE processor as specified in ISO/IEC 29500-3, the content of each

Digital Signature XML Signature part shall be a schema-valid XML document against xmldsig-core-schema.xsd, as

specified in the W3C Recommendation “XML-Signature Syntax and Processing”, and opc-digSig.xsd (see §C.4).

The following subclauses cover OPC-specific restrictions and extensions to “XML-Signature Syntax and

Processing”. Subclauses are provided for elements defined for OPC-specific use or for which OPC introduces

restrictions. Elements defined in “XML-Signature Syntax and Processing” (such as X509Certificate) for which no

subclause is provided below are allowed in OPC packages without restriction.

OPC-specific elements belong to the namespace for Digital Signatures (see Table E-1 in Annex E). Their schema

definitions are reached via Annex C.4.

[Note: For a general example of XML digital signature markup, see Section 2 of “XML-Signature Syntax and

Processing”. For a complete example of an OPC-specific digital signature, see §12.7. end note]

 Signature Element

This document introduces further requirements to those defined in §4.1 of “XML-Signature Syntax and

Processing”.

A Signature element shall contain exactly one OPC-specific Object element and zero or more

application-defined Object elements.

 SignedInfo Element

This document introduces further requirements to those defined in §4.3 of “XML-Signature Syntax and

Processing”

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 53

A SignedInfo element shall contain exactly one reference to an OPC-specific Object element.

 CanonicalizationMethod Element

This document introduces further requirements to those defined in §4.3.1 of “XML-Signature Syntax and

Processing”.

Packages shall use only the following canonicalization methods:

• XML Canonicalization (c14n)

• XML Canonicalization with Comments (c14n with comments)

 Reference Element

12.5.5.1 General

This document introduces further requirements to those defined in §4.3.3 of “XML-Signature Syntax and

Processing”.

12.5.5.2 Reference Element as a Child of a SignedInfo Element

Reference elements within a SignedInfo element shall reference elements only within the same Signature

element, and should reference an Object element.

12.5.5.3 Reference Element as a Child of a Manifest Element

Each Reference element that is a child of a Manifest element shall only reference parts in the package. The

value of the URI attribute shall be a part name without a fragment identifier.

References to package parts shall include the part media type as a query component. The syntax of the relative

reference is as follows:

/page1.xml?ContentType=value

where value is the (case-insensitive) media type of the targeted part.

[Example:

Example 12–3. Part reference with query component

In the following example, the media type is “application/vnd.openxmlformats-package.relationships+xml”:

URI="/_rels/document.xml.rels?ContentType=application/vnd.openxmlformats-

package.relationships+xml"

end example]

ISO/IEC 29500-2:201x(E)

54 ©ISO/IEC 201x – All rights reserved

 Transform Element

12.5.6.1 General

This document introduces further requirements to those defined in §4.3.3.4 of “XML-Signature Syntax and

Processing”.

One of the following transform algorithms shall be specified:

• XML Canonicalization (c14n)

• XML Canonicalization with Comments (c14n with comments)

• Relationships transform (OPC-specific)

12.5.6.2 Transform Element Representing a Relationships Transform

A Transform element represents a Relationships transform if the value of its attribute "Algorithm" is:

http://schemas.openxmlformats.org/package/2006/RelationshipTransform

Such a Transform element shall:

• contain one or more RelationshipReference or RelationshipsGroupReference elements,

• be a descendant element of a Manifest element,

• be followed by a Transform element specifying either XML Canonicalization (c14n) or XML Canonicalization

with Comments (c14n with comments)

A Relationships transform describes how the Relationship elements from the Relationships part are selected for

signing. Only one Relationships transform shall be specified for a particular Relationships part. For algorithm

details, see §12.6.

 RelationshipReference Element

The RelationshipReference element specifies which Relationship element is signed, and shall only occur as a

child element of a Transform element representing a Relationships transform (§12.5.6.2). This element is OPC-

specific.

Attributes Description

SourceId (Reference to Relationship) The value of the Id attribute of the referenced
Relationship element within the given Relationships
part

The possible values for this attribute are defined by
the xsd:string simple type of the W3C
Recommendation “XML Schema Part 2: Datatypes.

[Note: The W3C XML Schema definition of this element’s content model is the complex type

CT_RelationshipReference, which is defined in the schema opc-digSig.xsd (§C.2). end note]

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_RelationshipReference.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 55

 RelationshipsGroupReference Element

The RelationshipsGroupReference element specifies that the group of Relationship elements with the

specified value for the Type attribute is signed. This element shall only occur as a child element of a Transform

element representing a Relationships transform (§12.5.6.2). This element is OPC-specific.

Attributes Description

SourceType (Relationship Type) The value of the Type attribute of the Relationship
elements within the given Relationships part

The possible values for this attribute are defined by
the xsd:string simple type of the W3C
Recommendation “XML Schema Part 2: Datatypes.

[Note: The W3C XML Schema definition of this element’s content model is the complex type

CT_RelationshipsGroupReference, which is defined in the schema opc-digSig.xsd (§C.2). end note]

 DigestMethod Element

This document introduces further requirements to those defined in §4.3.3.5 of “XML-Signature Syntax and

Processing”.

The RSA-SHA1 algorithm shall be specified by a DigestMethod element.

 Object Element

12.5.10.1 General

This document introduces further requirements to those defined in §4.5 of “XML-Signature Syntax and

Processing”. An Object element shall be either OPC-specific or application-defined.

12.5.10.2 OPC-specific Object Element

An OPC-specific Object element shall contain a Manifest element followed by a SignatureProperties element,

and no other elements. The Id attribute of the OPC-specific Object element shall be specified, and its value shall

be "idPackageObject".

The Markup Compatibility namespace, as specified in Annex E, shall not be used within the OPC-specific Object

element.

12.5.10.3 Application-Defined Object Element

An application-defined Object element specifies application-defined information. The Id attribute of the

application-defined Object element shall be absent or have a value other than "idPackageObject".

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_RelationshipsGroupReference.html

ISO/IEC 29500-2:201x(E)

56 ©ISO/IEC 201x – All rights reserved

The Markup Compatibility namespace, as specified in Annex E, shall not be used within the OPC-specific Object

element.

 Manifest Element

This document introduces further requirements to those defined in §4.4 of “XML-Signature Syntax and

Processing” only when a Manifest element occurs as a child of an OPC-specific Object element. Reference

elements in such a Manifest element shall satisfy requirements defined in §12.5.5.3.

 SignatureProperty Element

This document introduces further requirements to those defined in §5.2 of “XML-Signature Syntax and

Processing” only when a SignatureProperty element is a child of a child SignatureProperties element of an

OPC-specific Object element. Such a SignatureProperty element shall specify the Id attribute to have the value

"idSignatureTime", and shall contain a SignatureTime element and no other elements. The Target attribute

value of such a SignatureProperty element shall be either empty or contain a fragment reference to the value

of the Id attribute of the root Signature element.

 SignatureTime Element

The SignatureTime element specifies the date/time stamp for the signature. This element is OPC-specific.

[Note: The W3C XML Schema definition of this element’s content model is the complex type CT_SignatureTime,

which is defined in the schema opc-digSig.xsd (§C.2). end note]

 Format Element

The Format element specifies the format of the date/time stamp. This element is OPC-specific. The date/time

format shall conform to the syntax described in the W3C Note "Date and Time Formats" [2].

[Note: The W3C XML Schema definition of this element’s content model is ST_Format, which is defined in the

schema opc-digSig.xsd (§C.2). end note]

 Value Element

The Value element specifies the value of the date/time stamp. This element is OPC-specific. The value shall

conform to the format specified in the Format element.

[Note: The W3C XML Schema definition of this element’s content model is ST_Value, which is defined in the

schema opc-digSig.xsd (§C.2). end note]

 XPath Element

Although the XPath element is allowed in “XML-Signature Syntax and Processing”, it is disallowed in this

document. [Note: The XPath element is only for XPath filtering, which is disallowed in OPC. end note]

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_SignatureTime.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_ST_Format.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_ST_Value.html

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 57

12.6 Relationships Transform Algorithm

The Relationships transform takes the XML document from the specified Relationships part and transforms it to

another XML document. This transform shall be supported in generating and validating signatures. [Note: The

output XML document is subsequently canonicalized by the specified canonicalization algorithm. end note]

The Relationships part might contain content from several namespaces, along with versioning instructions as

defined in Part 3, “Markup Compatibility and Extensibility”.

The Relationships transform algorithm has the following steps:

Step 1: Process versioning instructions

Process the Relationships part as specified in Part 3, §9, where the markup configuration is empty and the

application configuration contains the Relationships namespace only.

Step 2: Sort and select signed relationships

1) Remove all namespace declarations except the Relationships namespace declaration.

2) Remove the Relationships namespace prefix, if it is present.

3) Sort relationship elements by Id value in case-sensitive lexicographical order.

Keep only those Relationship elements which either have an Id value that matches a SourceId value or

have a Type value that matches a SourceType value specified in the Relationships transform. Matching

is ASCII case-insensitive.

[Example: Consider a Relationships part

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rlsps:Relationships

xmlns:rlsps="http://schemas.openxmlformats.org/package/2006/relationships"

xmlns:foo="http://example.com/foo">

 <rlsps:Relationship Id="rId6" Type="http://../relationships/footnotes"

Target="footnotes.xml"/>

 <rlsps:Relationship Id="rId8" Type="http://../relationships/header"

Target="header1.xml"/>

 <rlsps:Relationship Id="rId32" Type="http://../relationships/image"

Target="media/image1.png"/>

 <rlsps:Relationship Id="rId3" Type="http://../relationships/styles"

Target="styles.xml"/>

 <rlsps:Relationship Id="rId21" Type="http://../relationships/image"

Target="media/image2.jpeg"/>

 <rlsps:Relationship Id="rId12" Type="http://../relationships/header"

Target="header1.xml"/>

</rlsps:Relationships>

Given Id="rId6" and Type=http://../relationships/image, Step 2 constructs

http://../relationships/image

ISO/IEC 29500-2:201x(E)

58 ©ISO/IEC 201x – All rights reserved

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship Id="rId21" Type="http://../relationships/image"

Target="media/image2.jpeg"/>

 <Relationship Id="rId32" Type="http://../relationships/image"

Target="media/image1.png"/>

 <Relationship Id="rId6" Type="http://../relationships/footnotes"

Target="footnotes.xml"/>

</Relationships>

end example]

Step 3: Prepare for canonicalization

1) Remove all text nodes and comments within the document.

2) If the TargetMode attribute is missing from a Relationship element, add it with the default value

"Internal".

12.7 Digital Signature Example

This subclause is informative.

Digital signature markup for packages is illustrated in this example. For information about namespaces used in

this example, see Annex E. Note that the namespace prefix “pds” refers to the namespace for OPC-specific

elements in digital signatures.

There are two Object elements in this example. The first Object element is OPC-specific since the value of its Id

attribute is "idPackageObject". The second Object element (at the very end of this example) is application-

dependent since the value of its Id attribute is not "idPackageObject".

The OPC-specific Object element contains a Manifest element followed by a SignatureProperties element. The

Manifest element specifies a list of parts by its Reference child elements. The first Reference element

references a part /document.xml via the value of the URI attribute. The second Reference element references a

Relationships part /_rels/document.xml.rels, the source part of which is /document.xml.

Children of these Reference elements specify which transform and digest method is used and also specify

obtained digest values. Note that the first transform for the Relationships part is a Relationships transform.

The SignedInfo element (at the beginning of this example) references the two Object elements. The OPC-

specific Object element including its Manifest and SignatureProperties child elements are canonicalized and

then signed. The application-defined Object element is also signed.

The SignatureValue element contains a signature, while the KeyInfo element contains an X509 certificate.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 59

<Signature Id="SignatureId" xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

 <Reference

 URI="#idPackageObject"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="#Application"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>…</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>…</X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org/

 package/2006/digital-signature">

 <Manifest>

 <Reference URI="/document.xml?ContentType=application/

 vnd.ms-document+xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

ISO/IEC 29500-2:201x(E)

60 ©ISO/IEC 201x – All rights reserved

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="/_rels/document.xml.rels?ContentType=application/

 vnd.openxmlformats-package.relationships+xml">

 <Transforms>

 <Transform Algorithm="http://schemas.openxmlformats.org/

 package/2006/RelationshipTransform">

 <pds:RelationshipReference SourceId="B1"/>

 <pds:RelationshipReference SourceId="A1"/>

 <pds:RelationshipReference SourceId="A11"/>

 <pds:RelationshipsGroupReference SourceType=

 "http://schemas.example.com/required-resource"/>

 </Transform>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </Manifest>

 <SignatureProperties>

 <SignatureProperty Id="idSignatureTime" Target="#SignatureId">

 <pds:SignatureTime>

 <pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>

 <pds:Value>2003-07-16T19:20+01:00</pds:Value>

 </pds:SignatureTime>

 </SignatureProperty>

 </SignatureProperties>

 </Object>

 <Object Id="Application">…</Object>

</Signature>

End of informative text.

12.8 Generating Signatures

Digitally signed packages can be generated by reference generation and signature generation, as described

in §3.1 of “XML-Signature Syntax and Processing”, with some modification for OPC-specific constructs.

[Note: The steps below do not apply to the generation of signatures that contain application-defined Object

elements. end note]

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 61

The signature policy determines which parts and relationships to sign and the transforms and digest methods

that are applicable in each case.

Reference generation:

1) For each part being signed, create a Reference element following the steps in §3.1.1 of “XML-Signature

Syntax and Processing”.

2) Construct the OPC-specific Object element containing a Manifest element with both the child Reference

elements obtained from the preceding step and a child SignatureProperties element, which, in turn,

contains a child SignatureTime element.

3) Create a reference to the resulting OPC-specific Object element following the steps in §3.1.1 of “XML-

Signature Syntax and Processing”.

Signature generation:

Follow the steps in §3.1.2 of “XML-Signature Syntax and Processing”.

12.9 Validating Signatures

Digitally signed packages can be validated by reference validation and signature validation, as described in §3.2

of “XML-Signature Syntax and Processing”, with some modification for OPC-specific constructs.

[Note: The steps below do not apply to the validation of signatures that contain application-defined Object

elements. end note]

The certificate embedded in the KeyInfo element in the Digital Signature XML Signature part shall be used when

it is specified.

Reference validation:

First, validate the reference to the OPC-specific Object element following the steps in §3.2.2 of “XML-Signature

Syntax and Processing”.

Second, for each reference in the Manifest element:

1) validate the reference following the steps in §3.2.2 of “XML-Signature Syntax and Processing”.

2) validate the media type of the referenced part against the media type specified in the reference query

component. References are invalid if these two values are different. The string comparison shall be case-

insensitive.

Signature validation:

Follow the steps in §3.2.2 of “XML-Signature Syntax and Processing”.

ISO/IEC 29500-2:201x(E)

62 ©ISO/IEC 201x – All rights reserved

Annex A
(informative)

Preprocessing for Generating
Relative References

Relative references are available for referencing parts. Unicode strings that are similar to but are not strictly

relative references are also used to reference parts. [Example: "\a.xml" is not a relative reference since the

backslash character is disallowed in RFC 3986/3987.]

Some implementations provide preprocessing of such Unicode strings to replace them with relative references.

This preprocessing might involve some of (but is not limited to) the following actions:

• Percent-encode each open bracket (“[“) and close bracket (“]”).

• Percent-encode each space character (U+0020).

• Percent-encode each percent (“%”) character that is not followed by a hexadecimal notation of an octet

value.

• Un-percent-encode each percent-encoded unreserved character.

• Un-percent-encode each forward slash (“/”) and back slash (“\”).

• Convert all back slashes to forward slashes.

• If present in a segment containing non-dot (“.”) characters, remove trailing dot (“.”) characters from each

segment.

• Replace each occurrence of multiple consecutive forward slashes (“/”) with a single forward slash.

• If a single trailing forward slash (“/”) is present, remove that trailing forward slash.

• Remove complete segments that consist of three or more dots.

Examples of Unicode strings converted to relative references are shown below:

Unicode string Relative Reference

/A B.xml /A%20B.xml

/%41/%61.xml /A/a.xml

/%25XY.xml /%25XY.xml

/%XY.xml /%25XY.xml

/%2541.xml /%2541.xml

/%2e/%2e/a.xml /a.xml

\a.xml /a.xml

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 63

Unicode string Relative Reference

\%41.xml /A.xml

/%D1%86.xml /%D1%86.xml

\%2e/a.xml /a.xml

ISO/IEC 29500-2:201x(E)

64 ©ISO/IEC 201x – All rights reserved

Annex B
(normative)

Constraints and Clarifications on
the use of ZIP Features

B.1 General

The ZIP Appnote includes a number of features that packages do not support. Some ZIP features are clarified in

the context of this document.

B.2 Archive File Header Consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data

Descriptors, and in the File headers within the Central Directory Record. For a ZIP file to be a physical layer for a

package, the package implementer shall ensure that the ZIP file holds equal values in the appropriate fields of

every File Header within the Central Directory and the corresponding Local File Header and Data Descriptor pair,

when the Data Descriptor exists, except as described in Table B–5 for bit 3 of general-purpose bit flags.

B.3 Data Descriptor Signature

Packages may contain a 4-byte signature value 0x08074b50 at the beginning of Data Descriptors, immediately

before the crc-32 field. Package implementers should be able to read packages, whether or not a signature

exists.

B.4 Table Key

• “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex B indicates a package

implementer shall support reading the ZIP file containing this record or field, however, support might mean

ignoring. During production of a package, a “Yes” value for a field in a table in Annex B indicates that the

package implementer shall write out this record or field.

• “No” — A “No” value for a field in a table in Annex B indicates the package implementer should not use this

record or field.

• “Optional” — An “Optional” value for a record in a table in Annex B indicates that package implementers

might write this record during production.

• “Partially, details below” — A “Partially, details below” value for a record in a table in Annex B indicates that

the record contains fields that might not be supported by package implementers during production or

consumption. See the details in the corresponding table to determine requirements.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 65

• “Only used when needed” — The value “Only used when needed” associated with a record in a table in

Annex C indicates that the package implementer shall use the record only when needed to store data in the

ZIP file.

Table B–1 specifies the requirements for package production, consumption, and editing in regard to particular

top-level records or fields described in the ZIP Appnote. [Note: In this context, editing means in-place

modification of individual records. A format specification can require editing applications to instead modify

content in-memory and re-write all parts and relationships on each save in order to maintain more rigorous

control of ZIP record usage. end note]

Table B–1. Support for records

Record name Supported on
Consumption

Supported on
Production

Pass through on
editing

Local File Header Yes (partially, details
below)

Yes (partially, details
below)

Yes

File data Yes Yes Yes

Data descriptor Yes Optional Optional

Archive decryption
header

No No No

Archive extra data
record

No No No

Central directory
structure:
File header

Yes (partially, details
below)

Yes (partially, details
below)

Yes

Central directory
structure:
Digital signature

Yes (ignore the
signature data)

Optional Optional

Zip64 end of central
directory record V1
(from spec version
4.5)

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

Zip64 end of central
directory record V2
(from spec version
6.2)

No No No

Zip64 end of central
directory locator

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

End of central
directory record

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Yes

ISO/IEC 29500-2:201x(E)

66 ©ISO/IEC 201x – All rights reserved

Table B–2 specifies the requirements for package production, consumption, and editing in regard to individual

record components described in the ZIP Appnote.

Table B–2. Support for record components

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Local File Header Local file header
signature

Yes Yes Yes

Version needed to extract Yes (partially, see
Table B–3)

Yes (partially, see
Table B–3)

Yes (partially,
see Table B–3)

General purpose bit flag Yes (partially, see
Table B–5)

Yes (partially, see
Table B–5)

Yes (partially,
see Table B–5)

Compression method Yes (partially, see
Table B–4)

Yes (partially, see
Table B–4)

Yes (partially,
see Table B–4)

Last mod file time Yes Yes Yes

Last mod file date Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table B–6)

Yes (partially, see
Table B–6)

Yes (partially,
see Table B–6)

Central directory
structure: File header

Central file header
signature

Yes Yes Yes

version made by: high
byte

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low
byte

Yes Yes Yes

Version needed to extract
(see Table B–3 for details)

Yes (partially, see
Table B–3)

Yes (1.0, 1.1, 2.0,
4.5)

Yes

General purpose bit flag Yes (partially, see
Table B–5)

Yes (partially, see
Table B–5)

Yes (partially,
see Table B–5)

Compression method Yes (partially, see
Table B–4)

Yes (partially, see
Table B–4)

Yes (partially,
see Table B–4)

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 67

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Last mod file time (Pass
through, no
interpretation)

Yes Yes Yes

Last mod file date (Pass
through, no
interpretation)

Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File comment length Yes Yes
(always set to 0)

Yes

Disk number start Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Internal file attributes Yes Yes Yes

External file attributes
(Pass through, no
interpretation)

Yes Yes
(MS DOS default
value)

Yes

Relative offset of local
header

Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table B–6)

Yes (partially, see
Table B–6)

Yes (partially,
see Table B–6)

File comment (variable
size)

Yes Yes (always set
to empty)

Yes

Zip64 end of central
directory V1 (from
spec version 4.5, only
used when needed)

Zip64 end of central
directory signature

Yes Yes Yes

Size of zip64 end of
central directory

Yes Yes Yes

Version made by: high
byte (Pass through, no
interpretation)

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low
byte

Yes Yes (always 4.5
or above)

Yes

Version needed to extract
(see Table B–3 for details)

Yes (4.5) Yes (4.5) Yes (4.5)

ISO/IEC 29500-2:201x(E)

68 ©ISO/IEC 201x – All rights reserved

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

Zip64 extensible data
sector

Yes No Yes

Zip64 end of central
directory locator (only
used when needed)

Zip64 end of central dir
locator signature

Yes Yes Yes

Number of the disk with
the start of the zip64 end
of central directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Relative offset of the
zip64 end of central
directory record

Yes Yes Yes

Total number of disks Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

End of central
directory record

End of central dir
signature

Yes Yes Yes

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archive)

Yes (always 1
disk)

Yes (partial —
no multi disk
archive)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 69

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

ZIP file comment length Yes Yes Yes

ZIP file comment Yes No Yes

Table B–3 specifies the detailed production, consumption, and editing requirements for the Extract field, which

is fully described in the ZIP Appnote.

Table B–3. Support for Version Needed to Extract field

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is a folder (directory) Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is compressed using
Deflate compression

Yes Yes Yes

2.0 File is encrypted using
traditional PKWARE
encryption

No No No

2.1 File is compressed using
Deflate64(tm)

No No No

2.5 File is compressed using
PKWARE DCL Implode

No No No

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format
extensions

Yes Yes Yes

4.6 File is compressed using
BZIP2 compression

No No No

ISO/IEC 29500-2:201x(E)

70 ©ISO/IEC 201x – All rights reserved

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES No No No

5.0 File is encrypted using
original RC2 encryption

No No No

5.0 File is encrypted using RC4
encryption

No No No

5.1 File is encrypted using AES
encryption

No No No

5.1 File is encrypted using
corrected RC2 encryption

No No No

5.2 File is encrypted using
corrected RC2-64
encryption

No No No

6.1 File is encrypted using non-
OAEP key wrapping

No No No

6.2 Central directory encryption No No No

Table B–4 specifies the detailed production, consumption, and editing requirements for the Compression

Method field, which is fully described in the ZIP Appnote.

Table B–4. Support for Compression Method field

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression
factor 1

No No No

3 The file is Reduced with compression
factor 2

No No No

4 The file is Reduced with compression
factor 3

No No No

5 The file is Reduced with compression
factor 4

No No No

6 The file is Imploded No No No

7 Reserved for Tokenizing compression
algorithm

No No No

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 71

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library
Imploding

No No No

11 Reserved by PKWARE No No No

Table B–5 specifies the detailed production, consumption, and editing requirements when utilizing these

general-purpose bit flags within records.

Table B–5. Support for modes/structures defined by general-purpose bit flags

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

0 If set, indicates that the file is encrypted. No No No

1,
2

Bit
2

Bit
1

0 0 Normal (-en) compression option
was used.

0 1 Maximum (-exx/-ex) compression
option was used.

1 0 Fast (-ef) compression option was
used.

1 1 Super Fast (-es) compression
option was used.

Yes Yes Yes

3 If this bit is set, the fields crc-32, compressed size,
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data.

Yes Yes Yes

4 Reserved for use with method 8, for enhanced
deflating

No Bits set to
0

Yes

5 If this bit is set, this indicates that the file is
compressed patched data. (Requires PKZIP version
2.70 or greater.)

No Bits set to
0

Yes

ISO/IEC 29500-2:201x(E)

72 ©ISO/IEC 201x – All rights reserved

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

6 Strong encryption. If this bit is set, you should set
the version needed to extract value to at least 50
and you shall set bit 0. If AES encryption is used,
the version needed to extract value shall be at
least 51.

No Bits set to
0

Yes

7 Currently unused No Bits set to
0

Yes

8 Currently unused No Bits set to
0

Yes

9 Currently unused No Bits set to
0

Yes

10 Currently unused No Bits set to
0

Yes

11 Currently unused No Bits set to
0

Yes

12 Unused No Bits set to
0

Yes

13 Used when encrypting the Central Directory to
indicate selected data values in the Local Header
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.

No Bits set to
0

Yes

14 Unused No Bits set to
0

Yes

15 Unused No Bits set to
0

Yes

Table B–6 specifies the detailed production, consumption, and editing requirements for the Extra field entries

reserved by PKWARE and described in the ZIP Appnote.

Table B–6. Support for Extra field (variable size), PKWARE-reserved

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0001 ZIP64 extended information
extra field

Yes Yes Optional

0x0007 AV Info No No Yes

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 73

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0008 Reserved for future Unicode
file name data (PFS)

No No Yes

0x0009 OS/2 No No Yes

0x000a NTFS No No Yes

0x000c OpenVMS No No Yes

0x000d Unix No No Yes

0x000e Reserved for file stream and
fork descriptors

No No Yes

0x000f Patch Descriptor No No Yes

0x0014 PKCS#7 Store for X.509
Certificates

No No Yes

0x0015 X.509 Certificate ID and
Signature for individual file

No No Yes

0x0016 X.509 Certificate ID for
Central Directory

No No Yes

0x0017 Strong Encryption Header No No Yes

0x0018 Record Management
Controls

No No Yes

0x0019 PKCS#7 Encryption
Recipient Certificate List

No No Yes

0x0065 IBM S/390 (Z390), AS/400
(I400) attributes —
uncompressed

No No Yes

0x0066 Reserved for IBM S/390
(Z390), AS/400 (I400)
attributes — compressed

No No Yes

0x4690 POSZIP 4690 (reserved) No No Yes

Table B–7 specifies the detailed production, consumption, and editing requirements for the Extra field entries

reserved by third parties and described in the ZIP Appnote.

Table B–7. Support for Extra field (variable size), third-party extensions

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x07c8 Macintosh No No Yes

0x2605 ZipIt Macintosh No No Yes

ISO/IEC 29500-2:201x(E)

74 ©ISO/IEC 201x – All rights reserved

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x2705 ZipIt Macintosh
1.3.5+

No No Yes

0x2805 ZipIt Macintosh
1.3.5+

No No Yes

0x334d Info-ZIP Macintosh No No Yes

0x4341 Acorn/SparkFS No No Yes

0x4453 Windows NT security
descriptor (binary
ACL)

No No Yes

0x4704 VM/CMS No No Yes

0x470f MVS No No Yes

0x4b46 FWKCS MD5 (see
below)

No No Yes

0x4c41 OS/2 access control
list (text ACL)

No No Yes

0x4d49 Info-ZIP OpenVMS No No Yes

0x4f4c Xceed original
location extra field

No No Yes

0x5356 AOS/VS (ACL) No No Yes

0x5455 extended timestamp No No Yes

0x554e Xceed unicode extra
field

No No Yes

0x5855 Info-ZIP Unix (original,
also OS/2, NT, etc)

No No Yes

0x6542 BeOS/BeBox No No Yes

0x756e ASi Unix No No Yes

0x7855 Info-ZIP Unix (new) No No Yes

0xa220 Padding, Microsoft No Optional Optional

0xfd4a SMS/QDOS No No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0.

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2,147,483,647.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 75

Annex C
(normative)

Schemas - W3C XML Schema

C.1 General

This Part of ISO/IEC 29500 includes a family of schemas defined using the W3C XML Schema 1.0 syntax. A ZIP file

containing all schemas in this annex is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-

XMLSchema/OpenPackagingConventions-XMLSchema.zip.

[Note: referenced resources will be moved to official websites of JTC1 before final publication. end note]

C.2 Media Types Stream

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-

contentTypes.xsd. The schema documentation is also accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes.html.

C.3 Core Properties Part

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-

coreProperties.xsd. The schema documentation is also accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties.html.

C.4 Digital Signature XML Signature Markup

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-digSig.xsd. The

schema documentation is also accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig.html.

C.5 Relationships Part

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-

relationships.xsd. The schema documentation is also accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships.html.

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/OpenPackagingConventions-XMLSchema.zip
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/OpenPackagingConventions-XMLSchema.zip
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-contentTypes.xsd
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-contentTypes.xsd
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes.html
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-coreProperties.xsd
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-coreProperties.xsd
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties.html
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-digSig.xsd
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig.html
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-relationships.xsd
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-XMLSchema/opc-relationships.xsd
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships.html

ISO/IEC 29500-2:201x(E)

76 ©ISO/IEC 201x – All rights reserved

Annex D
(informative)

Schemas - RELAX NG

D.1 General

This Part of ISO/IEC 29500 includes a family of schemas defined using the RELAX NG syntax. A ZIP file containing

all schemas in §D.2, §D.3, §D.4, §D.5, and §D.6.1 (but not §D.6.2) is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/

OpenPackagingConventions-RELAXNG.zip.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML

Schema is the definitive version.

[Note: referenced resources will be moved to official websites of JTC1 before final publication. end note]

D.2 Media Types Stream

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-contentTypes.rnc.

D.3 Core Properties Part

The schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-

coreProperties.rnc.

D.4 Digital Signature XML Signature Markup

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-digSig.rnc.

D.5 Relationships Part

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-relationships.rnc.

D.6 Additional Resources

D.6.1 XML

This schema is accessible as a link:

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/xml.rnc.

https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/OpenPackagingConventions-RELAXNG.zip
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/OpenPackagingConventions-RELAXNG.zip
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-contentTypes.rnc
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-coreProperties.rnc
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-coreProperties.rnc
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-digSig.rnc
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/opc-relationships.rnc
https://sc34wg4.github.io/OOXMLSchemas/Part2/OpenPackagingConventions-RELAXNG/xml.rnc

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 77

D.6.2 XML Digital Signature Core

The schema in §D.4 relies on two schemas from XML Security RELAX NG Schemas [3], security_any.rnc

(accessible as a link https://www.w3.org/TR/xmlsec-rngschema/security_any.rnc) and xmldsig-core-schema.rnc

(accessible as aa link https://www.w3.org/TR/xmlsec-rngschema/xmldsig-core-schema.rnc).

https://www.w3.org/TR/xmlsec-rngschema/security_any.rnc

ISO/IEC 29500-2:201x(E)

78 ©ISO/IEC 201x – All rights reserved

Annex E
(normative)

Standard Namespaces and Media
Types

The namespaces available for use in a package are listed in the table below:

Table E–1. Package-wide namespaces

Description Namespace URI

Media Types stream http://schemas.openxmlformats.org/package/2006/content-types

Core Properties http://schemas.openxmlformats.org/package/2006/metadata/core-properties

Digital Signatures http://schemas.openxmlformats.org/package/2006/digital-signature

Relationships http://schemas.openxmlformats.org/package/2006/relationships

The media types for the parts defined in this specification a package are listed in the following table:

Table E–2. Package-wide media types

Description Media type

Core Properties part application/vnd.openxmlformats-package.core-properties+xml

Digital Signature Certificate
part

application/vnd.openxmlformats-package.digital-signature-
certificate

Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin

Digital Signature XML Signature
part

application/vnd.openxmlformats-package.digital-signature-
xmlsignature+xml

Relationships part application/vnd.openxmlformats-package.relationships+xml

The relationship types available for use in a package are listed in the table below:

Table E–3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

http://schemas.openxmlformats.org/package/2006/relationships

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 79

Description Relationship Type

Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/signature

Digital Signature
Certificate

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/certificate

Digital Signature
Origin

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/origin

Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

ISO/IEC 29500-2:201x(E)

80 ©ISO/IEC 201x – All rights reserved

Annex F
(informative)

Physical Package Model Design
Considerations

F.1 General

The physical package model defines the ways in which packages are produced and consumed. This model is

based on three components: a producer, a consumer, and a pipe between them.

Figure F–1. Components of the physical package model

A producer is software or a device that writes packages. A consumer is software or a device that reads packages.

A device is hardware, such as a printer or scanner that performs a single function or set of functions. Data is

carried from the producer to the consumer by a pipe.

In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The

significant communication characteristics of this pipe are speed and request latency. For example, this

communication might occur across a process boundary or between a server and a desktop computer.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 81

In order to maximize performance, designers of physical formats consider access style, layout style, and

communication style.

F.2 Access Styles

F.2.1 General

The access style in which local access or networked access is conducted determines the simultaneity possible

between processing and input-output operations.

F.2.2 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without

sequentially processing the preceding parts of the package. For example, a byte-range request. This is the most

common access style.

F.2.3 Streaming Consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.

Physical formats should be designed to allow consumers to begin interpreting and processing the data they

receive before all of the bits of the package have been delivered through the pipe.

The earlier editions of this document defined requirements for streaming consumption. This edition dropped

them since different applications of OPC require different requirements on streaming consumption.

However, to allow streaming consumption, it is recommended that the Media Types stream have no Default

elements and should have one Override element for each part in the package. Each Override element should

appear before or in close proximity to the part to which it corresponds.

F.2.4 Streaming Creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the

parts that are to be written. For example, when an application begins to build a print spool file package, it might

not know how many pages the package contains. Likewise, a program that is generating a report might not know

initially how long the report is or how many pictures it has.

In order to support streaming creation, the package implementer should allow a producer to add parts after

other parts have already been added. A Consumer shall not require a producer to state how many parts they

might create when they start writing. The package implementer should allow a producer to begin writing the

contents of a part without knowing the ultimate length of the part.

F.2.5 Simultaneous Creation and Consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the

same time on a package. Because of the benefits that can be realized within pipelined architectures that use it,

the package implementer should support simultaneous creation and consumption in the physical package.

ISO/IEC 29500-2:201x(E)

82 ©ISO/IEC 201x – All rights reserved

F.3 Layout Styles

F.3.1 General

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in

one of two styles: simple ordering or interleaved ordering.

F.3.2 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes

for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package

uses simple ordering, all of the bytes for each part are stored contiguously.

F.3.3 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.

For example, interleaved ordering improves performance for multi-media playback, where video and audio are

delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing

easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the

physical package. The package implementer might handle the internal representation of interleaving differently

in different physical package models. Regardless of how the physical package model handles interleaving, a part

that is broken into multiple pieces in the physical file is considered one logical part; the pieces themselves are

not parts and are not addressable.

F.4 Communication Styles

F.4.1 General

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to

as the communication style. Communication can be based on sequential delivery of or random access to parts.

The communication style used depends on the capabilities of both the pipe and the physical format.

F.4.2 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the.

Generally, all pipes support sequential delivery.

F.4.3 Random Access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes

are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order

to maximize performance, the package implementer should support random access in both the pipe and the

physical package. In the absence of this support, consumers need to wait until the parts they need are delivered

sequentially.

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 83

Annex G
(informative)

Differences Between ISO/IEC
29500-2 and ECMA-376:2006

G.1 General

This annex documents the syntactic differences between the versions of the Open Packaging Specification

defined in this document and ECMA-376:2006.

G.2 XML Elements

The following XML elements are included in this document but are not included in ECMA-376:2006:

• The value element (in the Core Properties Part schema)

The following XML elements are included in ECMA-376:2006 but are not included in this document:

• The contentType element (in the Core Properties Part schema)

G.3 XML Attributes

No changes.

G.4 XML Enumeration Values

No changes.

G.5 XML Simple Types

No changes.

G.6 Part Names

Non-ASCII part names are allowed in this document but are disallowed in ECMA-376:2006.

ISO/IEC 29500-2:201x(E)

84 ©ISO/IEC 201x – All rights reserved

Annex H
(informative)

Package Example

H.1 General

This annex depicts an abstract package and a physical package representing a WordprocessingML document.

H.2 Abstract Package

This abstract package contains five parts: /_rels/.rels, /docProps/core.xml, /word/_rels/document.xml.rels,

/word/document.xml, and /word/settings.xml.

Figure H–1. An example abstract package

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas...org/package/2006/relationships">

 <Relationship Id="rId2"

 Type="http://schemas... "

 Target="settings.xml"/>

</Relationships>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas...org/package/2006/relationships">

 <Relationship Id="rId2"

 Type="http://schemas... "

 Target="docProps/core.xml"/>

 <Relationship Id="rId1"

 Type="http://schemas... "

 Target="word/document.xml"/>

</Relationships>

package Relationships part

part Relationships part associated with word/document.xml

ISO/IEC 29500-2:201x(E)

©ISO/IEC 201x – All rights reserved 85

Two of these parts are Relationships parts (/_rels/.rels and /word/_rels/document.xml.rels) and three of them

are non-Relationships parts (/word/document.xml, /docProps/core.xml, and /word/settings.xml), where

_rels/.rels is a package Relationships part and /word/_rels/document.xml.rels is a part Relationships part

associated with /word/document.xml. The package Relationships part contains two relationships from the

package to /docProps/core.xml and /word/document.xml, respectively. The part Relationships part contains a

relationship from /word/document.xml to /word/settings.xml.

H.3 Physical Package

This physical package (empty.docx) is a ZIP file. The ZIP items in this ZIP file are _rels/.rels, docProps/core.xml,

word/_rels/document.xml.rels, word/document.xml, and word/settings.xml, and [Content_Types].xml.

With the exception of [Content_Types].xml, these ZIP items represent parts. Note that part names have "/" as

the first character. [Content_Types].xml represents the Media Types stream.

ISO/IEC 29500-2:201x(E)

86 ©ISO/IEC 201x – All rights reserved

Bibliography

The following documents are useful references for implementers and users of this International Standard, in

addition to the Normative References:

[1] Character Model for the World Wide Web: String Matching and Searching, W3C Working Draft 07 April 2016,

https://www.w3.org/TR/2016/WD-charmod-norm-20160407/

[2] Date and Time Formats, W3C NOTE 19980827, 1997, http://www.w3.org/TR/1998/NOTE-datetime-

19980827

[3] XML Security RELAX NG Schemas, W3C Working Group Note 11 April 2013, https://www.w3.org/TR/xmlsec-

rngschema/

[4] ISO/IEC TR 30114-1, Information technology -- Extensions of Office Open XML file formats -- Part 1: Guidelines

http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827
https://www.w3.org/TR/xmlsec-rngschema/
https://www.w3.org/TR/xmlsec-rngschema/

	Rationale for the OPC Revision
	1. Part names, references, pack URIs, base URIs, resolution of relative references, and non-ASCII characters
	1.1 Defect Reports
	1.2 History
	Harmonizing OPC with Web Addresses and ZIP, SC34/WG4 N0148 (2010-09)
	Improving Part 2 in reply to DRs, SC34/WG4 N0207 (2011-09)
	Minutes of the Bellevue WG4 meeting (2013-06-17/20)

	1.3 Difficulties
	1.4 Solutions and Remaining Issues

	2. Addressing conformance issues (leftover from the BRM)
	2.1 Defect Reports
	2.2 Solutions

	3. Clarifications
	3.1 Terminology
	3.2 Physical Package Model
	3.3 Core Properties
	3.4 Digital Signatures

	4. Misc

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Notational Conventions
	5 General Description
	6 Conformance
	7 Overview
	8 Abstract Package Model
	8.1 General
	8.2 Parts
	8.2.1 General
	8.2.2 Part Names
	8.2.2.1 General
	8.2.2.2 Syntax
	8.2.2.3 Part Name Equivalence and Integrity in an Abstract Package

	8.2.3 Media types
	8.2.4 Growth Hint
	8.2.5 XML Usage

	8.3 Part Addressing
	8.3.1 General
	8.3.2 Pack Scheme
	8.3.3 Resolving a Pack IRI to a Resource
	8.3.4 Composing a Pack IRI
	8.3.5 Equivalence

	8.4 Resolving Relative References
	8.4.1 General
	8.4.2 Base IRIs
	8.4.3 Examples
	8.4.3.1 General
	8.4.3.2 Leading slash: "/b/bar.xml"
	8.4.3.3 No leading slash: "bar.xml"
	8.4.3.4 Dot segment: ./bar.xml
	8.4.3.5 Dot segment: "../bar.xml

	8.5 Relationships
	8.5.1 General
	8.5.2 Relationships Part
	8.5.2.1 Relationships Part
	8.5.2.2 Package Relationships Part
	8.5.2.3 Part Relationships Part

	8.5.3 Relationship Markup
	8.5.3.1 General
	8.5.3.2 Relationships Element
	8.5.3.3 Relationship Element

	8.5.4 Examples
	8.5.4.1 Relationships Part Associated with the Entire Package
	8.5.4.2 Relationships Part Associated with a Part
	8.5.4.3 Relationships Parts Related to Digital Signature Markup
	8.5.4.4 Relationships Targeting External Resources
	8.5.4.5 Multiple Relationships that have the Same Target

	8.5.5 Support for Versioning and Extensibility

	9 Physical Package Model
	9.1 General
	9.2 Physical Mapping Guidelines
	9.2.1 Using Features of Physical Formats
	9.2.2 Mapped Components
	9.2.3 Mapping Media Types to Parts
	9.2.3.1 General
	9.2.3.2 Media Types Stream Markup
	9.2.3.2.1 General
	9.2.3.2.2 Types Element
	9.2.3.2.3 Default Element
	9.2.3.2.4 Override Element

	9.2.3.3 Media Types Stream Markup Example
	9.2.3.4 Setting a Part Media Type in the Media Types Stream
	9.2.3.5 Determining a Part Media Type from the Media Types Stream
	9.2.3.6 Support for Versioning and Extensibility

	9.2.4 Interleaving
	9.2.5 Mapping Part Names to Physical Package Item Names
	9.2.5.1 General
	9.2.5.2 Logical Item Names
	9.2.5.3 Mapping Part Names to Logical Item Names
	9.2.5.4 Mapping Logical Item Names and Physical Package Item Names
	9.2.5.5 Mapping Logical Item Names to Part Names

	9.3 Mapping to a ZIP file
	9.3.1 General
	9.3.2 Mapping Part Data
	9.3.3 ZIP Item Names
	9.3.4 Mapping Logical Item Names to ZIP Item Names
	9.3.5 Mapping ZIP Item Names to Logical Item Names
	9.3.6 ZIP Package Limitations
	9.3.7 Mapping the Media Types Stream
	9.3.8 Mapping the Growth Hint

	10 Core Properties
	10.1 General
	10.2 Core Properties Part
	10.3 Core Properties Markup
	10.3.1 General
	10.3.2 coreProperties element
	10.3.3 Core Property Elements
	10.3.3.1 General
	10.3.3.2 Core Property elements from Dublin Core Metadata Element Set, Version 1.1
	10.3.3.3 Core Property Elements from DCMI Metadata Terms
	10.3.3.4 Core Property Elements defined in this Document
	10.3.3.4.1 category Element
	10.3.3.4.2 contentStatus Element
	10.3.3.4.3 keywords Element
	10.3.3.4.4 value Element
	10.3.3.4.5 lastModifiedBy Element
	10.3.3.4.6 lastPrinted Element
	10.3.3.4.7 revision Element
	10.3.3.4.8 version Element

	10.4 Support for Versioning and Extensibility

	11 Thumbnails
	12 Digital Signatures
	12.1 General
	12.2 Overview of OPC-Specific Restrictions and Extensions to “XML-Signature Syntax and Processing”
	12.3 Choosing Content to Sign
	12.4 Digital Signature Parts
	12.4.1 General
	12.4.2 Digital Signature Origin Part
	12.4.3 Digital Signature XML Signature Part
	12.4.4 Digital Signature Certificate Part

	12.5 Digital Signature Markup
	12.5.1 General
	12.5.2 Signature Element
	12.5.3 SignedInfo Element
	12.5.4 CanonicalizationMethod Element
	12.5.5 Reference Element
	12.5.5.1 General
	12.5.5.2 Reference Element as a Child of a SignedInfo Element
	12.5.5.3 Reference Element as a Child of a Manifest Element

	12.5.6 Transform Element
	12.5.6.1 General
	12.5.6.2 Transform Element Representing a Relationships Transform

	12.5.7 RelationshipReference Element
	12.5.8 RelationshipsGroupReference Element
	12.5.9 DigestMethod Element
	12.5.10 Object Element
	12.5.10.1 General
	12.5.10.2 OPC-specific Object Element
	12.5.10.3 Application-Defined Object Element

	12.5.11 Manifest Element
	12.5.12 SignatureProperty Element
	12.5.13 SignatureTime Element
	12.5.14 Format Element
	12.5.15 Value Element
	12.5.16 XPath Element

	12.6 Relationships Transform Algorithm
	12.7 Digital Signature Example
	12.8 Generating Signatures
	12.9 Validating Signatures

	Annex A (informative) Preprocessing for Generating Relative References
	Annex B (normative) Constraints and Clarifications on the use of ZIP Features
	B.1 General
	B.2 Archive File Header Consistency
	B.3 Data Descriptor Signature
	B.4 Table Key

	Annex C (normative) Schemas - W3C XML Schema
	C.1 General
	C.2 Media Types Stream
	C.3 Core Properties Part
	C.4 Digital Signature XML Signature Markup
	C.5 Relationships Part

	Annex D (informative) Schemas - RELAX NG
	D.1 General
	D.2 Media Types Stream
	D.3 Core Properties Part
	D.4 Digital Signature XML Signature Markup
	D.5 Relationships Part
	D.6 Additional Resources
	D.6.1 XML
	D.6.2 XML Digital Signature Core

	Annex E (normative) Standard Namespaces and Media Types
	Annex F (informative) Physical Package Model Design Considerations
	F.1 General
	F.2 Access Styles
	F.2.1 General
	F.2.2 Direct Access Consumption
	F.2.3 Streaming Consumption
	F.2.4 Streaming Creation
	F.2.5 Simultaneous Creation and Consumption

	F.3 Layout Styles
	F.3.1 General
	F.3.2 Simple Ordering
	F.3.3 Interleaved Ordering

	F.4 Communication Styles
	F.4.1 General
	F.4.2 Sequential Delivery
	F.4.3 Random Access

	Annex G (informative) Differences Between ISO/IEC 29500-2 and ECMA-376:2006
	G.1 General
	G.2 XML Elements
	G.3 XML Attributes
	G.4 XML Enumeration Values
	G.5 XML Simple Types
	G.6 Part Names

	Annex H (informative) Package Example
	H.1 General
	H.2 Abstract Package
	H.3 Physical Package

	Bibliography

